2021
DOI: 10.1101/2021.04.07.438905
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Real-time object locator for cryo-EM data collection --- You only navigate EM once ---

Abstract: In cryo-electron microscopy (cryo-EM) data collection, locating a target object is the most error-prone. Here, we present a machine learning-based approach with a real-time object locator named yoneoLocr using YOLO, a well-known object detection system. Implementation showed its effectiveness in rapidly and precisely locating carbon holes in single particle cryo-EM and for locating crystals and evaluating electron diffraction (ED) patterns in automated cryo-electron crystallography (cryo-EX) data collection.

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 22 publications
0
0
0
Order By: Relevance