Current models to study the hematopoietic syndrome largely rely on the uniform whole-body exposures. However, in the radio-nuclear accidents or terrorist events, exposure can be non-uniform. The data available on the non-uniform exposures is limited. Thus, we have developed a mice model for studying the hematopoietic syndrome in the non-uniform or partial body exposure scenarios using the localized cobalt60 gamma radiation exposure. Femur region of Strain ‘A’ male mice was exposed to doses ranging from 7 to 20 Gy. The 30 day survival assay showed 19 Gy as LD100 and 17 Gy as LD50. We measured an array of cytokines and important stem cell markers such as IFN-γ, IL-3, IL-6, GM-CSF, TNF-α, G-CSF, IL-1α, IL-1β, CD 34 and Sca 1. We found significant changes in IL-6, GM-CSF, TNF-α, G-CSF, and IL-1β levels compared to untreated groups and amplified levels of CD 34 and Sca 1 positive population in the irradiated mice compared to the untreated controls. Overall, we have developed a mouse model of the hematopoietic acute radiation syndrome that might be useful for understanding of the non-uniform body exposure scenarios. This may also be helpful in the screening of drugs intended for individuals suffering from radiation induced hematopoietic syndrome.