2021
DOI: 10.1016/j.jlumin.2021.118099
|View full text |Cite
|
Sign up to set email alerts
|

Radio-photoluminescence properties of silver-doped cesium chloride transparent ceramics

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
6

Relationship

2
4

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 32 publications
0
2
0
1
Order By: Relevance
“…事实上,有关 Cu 离子掺杂材料的辐射发光现 象早已被广泛研究,不过多集中在 TSL、OSL 和闪 烁发光,基于 RPL 特性的研究有限 [42] 。大多数 Cu 离子掺杂体系的 RPL 材料能够显示良好的化学耐 久性,但由于较低的辐射探测灵敏度,并不适用于 个人剂量监测,但在大剂量监测方面具有较大的应 用潜力。 Hashikawa 等 [42] (a) Schematic diagram of RPL/OSL/TSL general luminescence mechanism [13] ; (b) Excitation and emission spectra of Ag-PG [7] ; (c) Emission spectrum of Ag-PG under different doses of X-ray irradiation [52] ; (d) Excitation spectrum (pink dotted line) and emission spectrum of Ag-Rb glass before and after X-ray (10 Gy) irradiation [54] ; (e) Emission spectra of Ag-Nd co-doped phosphate glass at different radiation doses (310 nm excitation) [55] ; (f) Excitation spectrum (dashed line) and emission spectrum (solid line) of Ag-doped CsCl before and after X-ray irradiation [59] ; (g) Excitation and emission contour spectra of Al2O3:C,Mg irradiated by β-rays ( 90 Sr/ 90 Y) [63] ; (h) Excitation spectrum and emission spectrum of LiF after X-ray irradiation (126 Gy) [64] ; (i) RPL defect center in LiF, where F3 + is formed by three anionic vacancies capturing two electrons and F2 is formed by two anionic vacancies capturing two electrons [7] 随后, Hashikawa 等 [66] [68] 。Sm 离子是目前研究最多的镧系元 素, Sm 离子掺杂体系的 RPL 特性于 21 世纪初被发 现,但最初并没有用于辐射剂量学,而是用于高密 度的光学存储器 [7] 。直到 2011 年,Okada 等 [69][70] 才 将 Sm 离子掺杂材料用于 X 射线微束的剂量分布检 测。基于 Sm 离子掺杂的 RPL 材料体系有许多,主 要包括氟磷酸盐、氧化物、氟氧化物和卤化物等, 但实际只有少部分能够表现出 RPL 特性。特别需要 指出的是,Sm 离子掺杂材料具有极大的剂量范围 (mGy~kGy),且大部分材料具有较好的辐射灵敏度 和可循环使用性等特点 [32,34,71] 。此外,Sm 离子掺 杂材料记录的 RPL 信号极其稳定,几乎不会衰退。 同时,辐照后产生的 RPL 信号具有极短的积聚时间, 因此适用于辐射剂量的实时监测。在 Sm 离子体系 的化合物中, Sm 离子在二价和三价下均具有稳定的 氧化态,但它们却拥有不同的电子架构。基态下的 [7,32,72]…”
Section: Cu 离子掺杂 Rpl 材料unclassified
“…事实上,有关 Cu 离子掺杂材料的辐射发光现 象早已被广泛研究,不过多集中在 TSL、OSL 和闪 烁发光,基于 RPL 特性的研究有限 [42] 。大多数 Cu 离子掺杂体系的 RPL 材料能够显示良好的化学耐 久性,但由于较低的辐射探测灵敏度,并不适用于 个人剂量监测,但在大剂量监测方面具有较大的应 用潜力。 Hashikawa 等 [42] (a) Schematic diagram of RPL/OSL/TSL general luminescence mechanism [13] ; (b) Excitation and emission spectra of Ag-PG [7] ; (c) Emission spectrum of Ag-PG under different doses of X-ray irradiation [52] ; (d) Excitation spectrum (pink dotted line) and emission spectrum of Ag-Rb glass before and after X-ray (10 Gy) irradiation [54] ; (e) Emission spectra of Ag-Nd co-doped phosphate glass at different radiation doses (310 nm excitation) [55] ; (f) Excitation spectrum (dashed line) and emission spectrum (solid line) of Ag-doped CsCl before and after X-ray irradiation [59] ; (g) Excitation and emission contour spectra of Al2O3:C,Mg irradiated by β-rays ( 90 Sr/ 90 Y) [63] ; (h) Excitation spectrum and emission spectrum of LiF after X-ray irradiation (126 Gy) [64] ; (i) RPL defect center in LiF, where F3 + is formed by three anionic vacancies capturing two electrons and F2 is formed by two anionic vacancies capturing two electrons [7] 随后, Hashikawa 等 [66] [68] 。Sm 离子是目前研究最多的镧系元 素, Sm 离子掺杂体系的 RPL 特性于 21 世纪初被发 现,但最初并没有用于辐射剂量学,而是用于高密 度的光学存储器 [7] 。直到 2011 年,Okada 等 [69][70] 才 将 Sm 离子掺杂材料用于 X 射线微束的剂量分布检 测。基于 Sm 离子掺杂的 RPL 材料体系有许多,主 要包括氟磷酸盐、氧化物、氟氧化物和卤化物等, 但实际只有少部分能够表现出 RPL 特性。特别需要 指出的是,Sm 离子掺杂材料具有极大的剂量范围 (mGy~kGy),且大部分材料具有较好的辐射灵敏度 和可循环使用性等特点 [32,34,71] 。此外,Sm 离子掺 杂材料记录的 RPL 信号极其稳定,几乎不会衰退。 同时,辐照后产生的 RPL 信号具有极短的积聚时间, 因此适用于辐射剂量的实时监测。在 Sm 离子体系 的化合物中, Sm 离子在二价和三价下均具有稳定的 氧化态,但它们却拥有不同的电子架构。基态下的 [7,32,72]…”
Section: Cu 离子掺杂 Rpl 材料unclassified
“…The characteristic absorption peak for Ag-nanowires synthesized by any method is reported from 300-440 nm ranges which is due to the oscillation of electrons in the conduction band [44,45]. Moreover, the trapped electron can also be involved in intra-center transitions between Ag 0 /Ag + , due to which the absorption band could appear in the 440-550 nm range [46]. It is clear from spectra that there is no peak in Psidium Guajava seed extract solution which illustrates the absence of Ag-NWs.…”
Section: Uv-visible Analysis Of Ag-nwsmentioning
confidence: 99%
“…There are two types of dosimeters classified by different ways (energies) to stimulate carriers; thermally stimulated luminescence (TSL) dosimeter uses thermal stimulation, [12][13][14][15][16][17] and optically stimulated luminescence (OSL) dosimeter utilizes light stimulation. [18][19][20][21][22] In contrast, some dosimeters use a phenomenon called radio-PL, [23][24][25][26][27][28][29][30] in which luminescent centers corresponding to the irradiation doses are generated newly, and RPL can be easily measured by a PL technique. The most prominent RPL material is Ag-doped phosphate glass (RPL glass).…”
Section: Introductionmentioning
confidence: 99%