1970
DOI: 10.1021/j100909a008
|View full text |Cite
|
Sign up to set email alerts
|

Radicals formed by the reaction of electrons with amino acids in an alkaline glass

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
24
0
2

Year Published

1970
1970
2015
2015

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 48 publications
(26 citation statements)
references
References 3 publications
0
24
0
2
Order By: Relevance
“…[16][17][18] Also in several spintrapping studies 19,20 of alanine radicals formed in polycrystalline samples, only R1 was detected. However, it has been suggested 3,13,[16][17][18]21,22 that the spectra of several radicals could be overlapping. This hypothesis was proven by Sagstuen et al 2 In their study, two new radicals were clearly detected by a combination of EPR (electron paramagnetic resonance), ENDOR (electron-nuclear double resonance), and EIE (ENDOR-induced EPR) techniques.…”
Section: Introductionmentioning
confidence: 99%
“…[16][17][18] Also in several spintrapping studies 19,20 of alanine radicals formed in polycrystalline samples, only R1 was detected. However, it has been suggested 3,13,[16][17][18]21,22 that the spectra of several radicals could be overlapping. This hypothesis was proven by Sagstuen et al 2 In their study, two new radicals were clearly detected by a combination of EPR (electron paramagnetic resonance), ENDOR (electron-nuclear double resonance), and EIE (ENDOR-induced EPR) techniques.…”
Section: Introductionmentioning
confidence: 99%
“…Thus, it is of great interest to understand the interactions of low energy excess electrons (EEs) with biomolecules such as nucleotides/nucleosides/DNA, and amino acids/peptides/proteins. Numerous studies have been carried out to reveal the behavior of an EE interacting with biomolecules, [1][2][3][4][5][6][7][8][9][10][11][12][13] with some focused on radiation damage to DNA. [1][2][3] It has been shown that low energy (down to 0 eV) EEs are capable of producing single and double strand breaks in plasmids or isolated DNA at the phosphate-sugar C-O bond, after EE attachment to nucleotides.…”
Section: Introductionmentioning
confidence: 99%
“…Different from desolvated proteins, even with a little structural water, where an EE can localize at some electron-binding sites and also transfer through-space, or through-bond, amino acids and oligopeptides in water or physiological medium could exhibit complicated thermodynamic characteristics because solvent water also behaves as a good EE carrier, and solvent fluctuations could considerably affect the states and dynamics of the injected EE. Indeed, previous studies have demonstrated the reactivity of EEs with amino acids and N-acetyl amino acids in neutral aqueous 11 and alkaline glasses, 12 and shown that the injected EEs induce a number of fragmentation reactions in these aqueous systems to form various radical species. In particular, it was experimentally reported that after attachment, EEs are found to add to the peptide bond or to the carboxyl group, [13][14][15] which is distinctly different from the EE-binding modes in the gas phase.…”
Section: Introductionmentioning
confidence: 99%
“…Os primeiros estudos para determinação dos radicais livres presente na molécula de Asn após a irradiação foram empregados em cristais únicos. Sevilla, em 1970(Sevilla M, 1970, usando espectroscopia de RPE, reportou a formação de dois radicais variando a temperatura de 77 K à 190 K. Observou-se a formação de um ânion no grupo amina à 175 K e, com o aumento da temperatura para 190 K, outro radical era formado a partir de uma abstração do hidrogênio do carbono-α (Sevilla M, 1970).…”
Section: Capítulo 1: Introduçãounclassified
“…Recentemente um trabalho de Knudtsen et al em 2014 (Knudtsen et al, 2014) reportou a formação de três radicais induzidos pela radiação ionizante usando Teoria da Densidade do Funcional (Density Fuctional Therory -DFT) pela espectroscopia de EPR após irradiado (raios-γ) a uma temperatura de 275 K. O Radical I era indentificado como uma abstração de um hidrogênio localizado no único grupo metileno do amino ácido; no entanto, o Radical II era uma abstração de um hidrogênio do grupo amina, e o Radical III não foi identificado (Knudtsen et al, 2014). Entretanto, um outro trabalho conduzido por Strzelczak et al (Strzelczak et al, 2006) usando também DFT, estudou a formação dos radicais a partir da variação da temperatura de 77 K à 293 K. Esses autores tiveram a confirmação de quatro radicais livres em L-asparagina, concluindo a formação do ânion no grupo amina como reportado por Sevilla a uma temperatura de 175 K (Sevilla M, 1970) e também a confirmação do radical proposto por Close et al, a partir da abstração do hidrogênio em temperatura ambiente, além da confirmação da presença desse mesmo radical pelo aumento da temperatura para 190 K Fouse;Bernhard, 1977). Acima dessa temperatura, uma possível deamidação e descarboxilação pode ocorrer quando a temperatura é levada para 293 K. Nesse contexto, Strzelczak et al sugeriu um mecanismo de deamidação e descarboxilação na molécula de L-asparagina quando irradiada com raios-γ com o aumento da temperatura (Strzelczak et al, 2006), entretanto uma validação experimental do mecanismo proposto não foi reportada.…”
Section: Capítulo 1: Introduçãounclassified