2020
DOI: 10.3788/cjl202047.0500014
|View full text |Cite
|
Sign up to set email alerts
|

Radiation-Resistant Active Fibers for Space Applications

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 0 publications
0
2
0
1
Order By: Relevance
“…Although gamma rays can cause some displacement damage, their effect is minimal compared to particles like neutrons [40]. During elastic or inelastic collisions of high-energy particles with the lattice, if the lattice absorbs enough energy, the atoms within it will shift from their original positions and undergo rearrangement, leading to the formation of defects [41].…”
Section: Displacement Damagementioning
confidence: 99%
See 1 more Smart Citation
“…Although gamma rays can cause some displacement damage, their effect is minimal compared to particles like neutrons [40]. During elastic or inelastic collisions of high-energy particles with the lattice, if the lattice absorbs enough energy, the atoms within it will shift from their original positions and undergo rearrangement, leading to the formation of defects [41].…”
Section: Displacement Damagementioning
confidence: 99%
“…Only when the energy of incident particles reaches a sufficiently high level can the atomic nuclei attain higher excited states during collisions [40], resulting in atomic displacement. Inelastic collisions, prevalent in displacement damage, involve the transfer of energy from incident particles to atoms, causing atomic displacement and the formation of interstitial atoms and vacancies, known as non-paramagnetic defects [41]. This process can also trigger the displacement of oxygen atoms within the intrinsic structure of quartz glass, forming E' centers [35].…”
Section: Displacement Damagementioning
confidence: 99%
“…子核在碰撞中达到更高的激发态 [8] ,从而使得原子产生位移。非弹性碰撞是位移损伤中发生 概率较大的过程,入射粒子的部分能量转移给原子,致使原子移位,形成间隙原子和空位, 也即非顺磁缺陷 [9] ,也可以促使石英玻璃的本征体结构中的氧原子产生位移,形成 E'心 [2] 。 更详细的讨论将在 2.1.3.2 节给出。 [10] Fig. 3 Model diagram of Frankel defect 氧空位(Oxygen deficiency center,ODC)也称缺氧中心或中性氧空位,其结构简式表 示为 [10,11] Si Si    ,其中,  表示三个硅-氧键。1957 年首次发现 ODC [12] 。玻璃本征结构 硅-氧-硅键中的氧原子,在辐射下发生位移(即氧原子缺失) [13] ,形成方程式程如下,其中 的结构与简单氧空位一致,并且认为 ODC(I) 、ODC(II)和 E'心之间是可以进行转换的 [19] 。 Imai 等学者通过实验分析,认为 ODC(I)的结构可由硅硅键参与组成 [16] 。Trukhin 等学者通 过实验证明 E'心(顺磁缺陷的一种,如图 5(a)所示)的形成与 ODC(I)无关,ODC(I) 与石英玻璃体中的中性氧空位并不一致 [21] 。Griscom 学者则认为 ODC(I)的结构表征远比简 F o r R e v i e w O n l y 中国科学: 物理学 力学 天文学 http://physcn.scichina.com 单氧空位复杂,且无法证明可以实现简单氧空位与 ODC(II)之间的转化 [20] 。7.6eV 处(ODC 或部分重叠的 ODC (I) ) 吸收带激发后产生蓝色和紫外波段 [22] , 激发时产生的 ODC (II) 在 2.7eV 和 4.4eV 产生发光带。与 7.6eV 吸收带相关的 ODC(I)在连续光泵浦下可能会产生 ODC(II) [20] 。 关于过氧连接(Peroxy linkage,POL) ,2002 年 Skuja 学者等通过激光照射氧分子分解 得到,并首次通过实验的方法确定 POL 吸收带位于 7.1eV 处,与理论预测一致 [23] 。过氧连接可…”
Section: 位移损伤unclassified