2014
DOI: 10.1007/s10707-014-0213-7
|View full text |Cite
|
Sign up to set email alerts
|

Querying visible points in large obstructed space

Abstract: Querying visible points is a fundamental problem in computational geometry and spatial databases. With the development of new applications such as trip planning and nearest neighbors, querying visible points plays a key role in obstacle space and the result can be further used such as defining the shortest path. Thereby, efficiently finding the result is essentially important. However, the performance of current methods decrease substantially for large datasets. To solve the problem, we proposes a new and fast… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2017
2017
2018
2018

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 35 publications
0
1
0
Order By: Relevance
“…A path solution through this channel is determined with a "funnel" algorithm developed by Lee and Preparata, and Chazelle [13,14] as cited by Hershberger [15]. The funnel algorithm has been demonstrated under multiple applications, including path finding for autonomous agents [16], querying visible points in large data sets to define shortest paths [17], shortest paths for tethered robots [18], and robots in extreme terrain [19].…”
Section: Introductionmentioning
confidence: 99%
“…A path solution through this channel is determined with a "funnel" algorithm developed by Lee and Preparata, and Chazelle [13,14] as cited by Hershberger [15]. The funnel algorithm has been demonstrated under multiple applications, including path finding for autonomous agents [16], querying visible points in large data sets to define shortest paths [17], shortest paths for tethered robots [18], and robots in extreme terrain [19].…”
Section: Introductionmentioning
confidence: 99%