In the current research, the ultra fast cooling (UFC) of a hot stationary AISI‐304 steel plate has been investigated by using air atomized spray at different air and water flow rates. The initial temperature of the plate, before the cooling starts, is kept at 900°C or above. The spray was produced from a full cone internal mixing air atomized spray nozzle at a fixed nozzle to plate distance; and the average spray mass flux was varied from 130 to 370 kg m−2 s by selecting different combinations of air and water flow rates. The surface heat flux and surface temperature calculations have been performed by using INTEMP software and the calculated results have been validated by comparing with the measured thermocouple data. The heat transfer analysis indicates that the cooling occurs in the transition boiling regime up to surface temperature of 500°C and thereafter it changes to nucleate boiling regime. The superposed flow of air on the hot plate enhances the cooling in the temperature range of 900–500°C by sweeping the partially evaporated droplets from the hot surface. However, due to the high percentage of fine water droplets in the resultant spray produced at higher air flow rates, the maximum cooling rate is achieved at the medium air flow rate of 30 N m3 h−1. The cooling rate (182°C s−1) produced by an air atomized spray is found to be in the UFC regime of a 6 mm thick steel plate. The findings of this research can be considered as the basis for the fabrication of cooling system in the run‐out table of a hot strip mill.