2016
DOI: 10.1103/physrevapplied.5.044019
|View full text |Cite
|
Sign up to set email alerts
|

Quench-Induced Degradation of the Quality Factor in Superconducting Resonators

Abstract: Quench of superconducting radio-frequency cavities frequently leads to the lowered quality factor Q 0 , which had been attributed to the additional trapped magnetic flux. Here we demonstrate that the origin of this magnetic flux is purely extrinsic to the cavity by showing no extra dissipation (unchanged Q 0 ) after quenching in zero magnetic field, which allows us to rule out intrinsic mechanisms of flux trapping such as generation of thermal currents or trapping of the rf field. We also show the clear relati… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
36
0
1

Year Published

2016
2016
2024
2024

Publication Types

Select...
6
3

Relationship

1
8

Authors

Journals

citations
Cited by 30 publications
(38 citation statements)
references
References 16 publications
1
36
0
1
Order By: Relevance
“…In this chapter, the detailed physics behind the quality factor degradation due to quench in superconducting resonators is described [124]. The experimental evidence reported proves that the Q 0 degradation due to quench is a direct consequence after quench can be achieved when the cavity is quenched in the absence of the external magnetic field-an alternative to warming up above the critical temperature-is described along with a consistent physical model of this phenomenon.…”
Section: Chapter Overviewmentioning
confidence: 91%
See 1 more Smart Citation
“…In this chapter, the detailed physics behind the quality factor degradation due to quench in superconducting resonators is described [124]. The experimental evidence reported proves that the Q 0 degradation due to quench is a direct consequence after quench can be achieved when the cavity is quenched in the absence of the external magnetic field-an alternative to warming up above the critical temperature-is described along with a consistent physical model of this phenomenon.…”
Section: Chapter Overviewmentioning
confidence: 91%
“…The points refer to magnetic field B and potential U 0 chosen for the numerical solutions in (a) [124]. .…”
Section: 11mentioning
confidence: 99%
“…Традиционные сверхпроводящие ускорители требуют наличия центральной криогенной системы для получения и распределения жидкого гелия, или же его постоянную доставку. Кроме того, содержание и обслуживание этих систем требуют особой квалификации и внимания персонала, поскольку при такой нештатной ситуации как квенч [323], размораживание или механическое повреждение, сверхпроводящий ускоритель или его часть может навсегда выйти из строя [324,325]. Развитие технологий в области сверхпроводимости, произошедшее за последнее десятилетие, позволяют значительно упростить дизайн сверхпроводящих ускорителей, а также сделать их мобильными, энергетически и экономически эффективными при мощности пучка порядка 1 MW [326], чего невозможно достичь с помощью нормальнопроводящих установок.…”
Section: автономные сверхпроводящие ускорителиunclassified
“…To derive an equation for the resonator feedback field, it is possible to follow the general methods for treating cavity resonators [59,60]. Here we keep in mind a cylindrical resonator cavity of radius R, length L, and volume V res = πR 2 L. The axis of the resonator is along the axis x.…”
Section: Resonator Fieldmentioning
confidence: 99%