Abstract. The Haagerup property for locally compact groups is generalised to the context of locally compact quantum groups, with several equivalent characterisations in terms of the unitary representations and positive-definite functions established. In particular it is shown that a locally compact quantum group G has the Haagerup property if and only if its mixing representations are dense in the space of all unitary representations. For discrete G we characterise the Haagerup property by the existence of a symmetric proper conditionally negative functional on the dual quantum group O G; by the existence of a real proper cocycle on G, and further, if G is also unimodular we show that the Haagerup property is a von Neumann property of G. This extends results of Akemann, Walter, Bekka, Cherix, Valette, and Jolissaint to the quantum setting and provides a connection to the recent work of Brannan. We use these characterisations to show that the Haagerup property is preserved under free products of discrete quantum groups.