2009
DOI: 10.1049/el:20092873
|View full text |Cite
|
Sign up to set email alerts
|

Quantum dot laser diode with low threshold and low internal loss

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

3
44
0
3

Year Published

2014
2014
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 108 publications
(51 citation statements)
references
References 5 publications
3
44
0
3
Order By: Relevance
“…To the best of our knowledge, this value of J th represents the lowest c.w. RT J th for any kind of laser on a silicon substrate to date, and is comparable to the best-reported values for conventional QD lasers on GaAs substrate 13,30 . The P out measured from both facets is as high as 105 mW at an injection current density of 650 A/cm 2 , with no evidence of power saturation up to this current density.…”
supporting
confidence: 77%
See 2 more Smart Citations
“…To the best of our knowledge, this value of J th represents the lowest c.w. RT J th for any kind of laser on a silicon substrate to date, and is comparable to the best-reported values for conventional QD lasers on GaAs substrate 13,30 . The P out measured from both facets is as high as 105 mW at an injection current density of 650 A/cm 2 , with no evidence of power saturation up to this current density.…”
supporting
confidence: 77%
“…IIIÐV semiconductors with superior optical properties, acting as optical gain media, can be either bonded or epitaxially grown on silicon substrates [6][7][8][9][10][11] , with the latter approach being more attractive for large scale, low-cost, and streamlined fabrication. However, until now, material lattice mismatch and incompatible thermal expansion coefficients between IIIÐV materials and silicon substrates have fundamentally limited the monolithic growth of IIIÐV lasers on silicon substrates by introducing high-density threading dislocations (TDs) 12 .Lasers with active regions formed from III-V quantum dots (QDs), nano-size crystals, can not only offer low threshold current density (J th ) but also reduced temperature sensitivity [13][14][15][16][17] . As shown in Figure 1a, within less than 10 years, the performance of QD lasers has surpassed state-of-the-art quantum-well (QW) lasers developed over the last few decades in terms of J th .…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…Наиболее значитель-ные результаты были достигнуты для лазеров с КТ на подложках GaAs (в особенности для излучающих в спек-тральном диапазоне вблизи 1.3 мкм [2,3]). Такие лазеры продемонстрировали рекордно низкую пороговую плот-ность тока [4], близкий к нулю фактор уширения лазер-ной линии [5], а также температурно-независимые поро-говые характеристики [6]. Лазеры с КТ на подложках InP являются перспективными приборами для использова-ния в телекоммуникационных системах с длиной волны генерации около 1.5 мкм (например, C-диапазону опти-ческой связи соответствуют длины волн 1530−1565 нм).…”
Section: Introductionunclassified
“…Early proposals with QDs [15] involved transitions between QDs in different layers, but the idea of using transitions inside a single QD was already suggested in Reference [16]. Later it was shown experimentally that QDs in general promise lower threshold currents than conventional laser diodes [17][18][19][20]. Recently, much experimental progress in the direction of QD intersublevel devices has been made with mid-infrared (mid-IR) photodetectors [21][22][23].…”
Section: Introductionmentioning
confidence: 99%