2018
DOI: 10.1088/2058-9565/aaa3a0
|View full text |Cite
|
Sign up to set email alerts
|

Quantum–classical interface based on single flux quantum digital logic

Abstract: We describe an approach to the integrated control and measurement of a large-scale superconducting multiqubit circuit using a proximal coprocessor based on the Single Flux Quantum (SFQ) digital logic family. Coherent control is realized by irradiating the qubits directly with classical bitstreams derived from optimal control theory. Qubit measurement is performed by a Josephson photon counter, which provides access to the classical result of projective quantum measurement at the millikelvin stage. We analyze t… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
102
0
3

Year Published

2018
2018
2023
2023

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 134 publications
(105 citation statements)
references
References 108 publications
0
102
0
3
Order By: Relevance
“…Quantum systems are inherently probabilistic, and neural systems are ideal statisticians [65][66][67]. It is exciting to envision an advanced hybrid computing system wherein a neural system learns the quantum nature of qubit circuits and a digital computer controls the operation of both [68]. Superconducting optoelectronic hardware is a strong candidate to meet the needs of this multi-modal computational network.…”
Section: Discussionmentioning
confidence: 99%
“…Quantum systems are inherently probabilistic, and neural systems are ideal statisticians [65][66][67]. It is exciting to envision an advanced hybrid computing system wherein a neural system learns the quantum nature of qubit circuits and a digital computer controls the operation of both [68]. Superconducting optoelectronic hardware is a strong candidate to meet the needs of this multi-modal computational network.…”
Section: Discussionmentioning
confidence: 99%
“…The pulses are then introduced to the integrated qubit unit to implement quantum gates. In order to improve the latency between the room temperature electronics and the low temperature device and in order to reduce the number of wiring which increases with the number of qubits, a part of the room temperature electronics could be substituted by single flux quantum logic circuits operated at a low temperature stage [14].…”
Section: Basic Operations In Superconducting Quantum Computersmentioning
confidence: 99%
“…Finally, controllers and computing units at room temperature need to be scalable as well. Technologies for making a two-dimensional (2D) array of qubits, which are required in most of the state-ofthe-art quantum error correction protocols, include threedimensional wiring, heat load control, miniaturization of peripheral circuits [14], [16], [17], [19], and so on. For quantum bits integrated in a 2D array, it is necessary to wire the control and readout lines perpendicularly to the substrate.…”
Section: Technological Requirements For Medium-sized Quantum Computersmentioning
confidence: 99%
“…Кленов, А.М. Сатанин водниковой электроники с использованием иного типа возбуждений -флаксонов [15][16][17][18][19][20][21].…”
Section: Introductionunclassified
“…В данной работе рассматривается способ управления состояниями кубитов короткими ∼ 1−100 ps одиночными немодулированными импульсами электромагнитного поля (флаксонами), которые распространяются по джозефсоновским передающим линиям в цепях энергоэффективной быстрой одноквантовой логики (ERSFQ). В отличие от известных подходов, где состоянием кубита управляют длительные последовательности одноквантовых импульсов напряжения и тока [21], здесь рассматривается реализация квантовых логических операций за счет воздействия на кубиты одного (двух) униполярных пикосекундных импульсов. Это позволяет уменьшить нежелательное обратное влияние импульсов на систему кубитов, характерную длительность операций и реализовать оптимальное управление путем изменений параметров флаксонов.…”
Section: Introductionunclassified