To solve the problems of backward means of coal mine gas and coal dust explosion monitoring, late reporting, and low leakage rate, a sound recognition method of coal mine gas and coal dust explosion based on GoogLeNet was proposed. After installing mining pickups in key monitoring areas of coal mines to collect the sounds of the working equipment and the environment, the collected sound was analyzed by continuous wavelet to obtain its scale coefficient map. This was then imported into GoogLeNet to obtain the recognition model of coal mine gas and coal dust explosions. The test sound was obtained by continuous wavelet analysis to obtain the scale coefficient map, brought into the completed training recognition model to obtain the sound signal class, and verified by experiment. Firstly, the scale coefficient map extracted from the sound signal by continuous wavelet analysis showed that the similarity between the subjective and objective indicators of the wavelet coefficient maps of the gas explosion sound and coal dust explosion sound was higher, but the difference between these and the rest of the coal mine sounds was clearer, helping to effectively distinguish gas and coal dust explosion sounds from other sounds. Secondly, the experimental results of GoogLeNet parameters can be obtained. When the dropout parameter is 0.5 and the initial learning rate is 0.001, the recognition effect of the model established by GoogLeNet was optimal. According to the selected parameters, the training loss, testing loss, training recognition rate, and testing recognition rate of the model are all in line with expectations. Finally, the experimental recognition results show that the recognition rate of the proposed method is 97.38%, the recall rate is 86.1%, and the accuracy rate is 100% for the case of a 9:1 ratio of test data to training data, and the overall recognition effect of the proposed GoogLeNet is significantly better than that of vgg and Alexnet, which can effectively solve the problem of under-sampling of coal mine gas and coal dust explosion sounds and can meet the need for the intelligent recognition of coal mine gas and dust explosions.