2000
DOI: 10.1021/bp0000860
|View full text |Cite
|
Sign up to set email alerts
|

Purification of Oligonucleotides by High Affinity, Low Molecular Weight Displacers

Abstract: High affinity, low molecular weight anionic displacers were successfully employed for the purification of antisense oligonucleotides. Several important structural characteristics were identified that contribute to the affinity of low molecular weight displacers to a hydrophilized polystyrene divinyl benzene anion exchanger. Sulfonic acid groups were found to possess higher affinity than carboxylic acid and phosphate functionalities, and nonspecific interactions (particularly hydrophobic interactions) were show… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
13
0

Year Published

2003
2003
2021
2021

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 23 publications
(13 citation statements)
references
References 28 publications
0
13
0
Order By: Relevance
“…A Jupiter 5 m C4 300A column (4.6 mm × 50 mm) was purchased from Phenomenex (Torrance, CA). Ribonuclease A from bovine pancreas (RNaseA), ribonuclease B from bovine pancreas (RNaseB), ␣-chymotrypsinogen A from bovine pancreas (␣-ChyA), cytochrome C from equine heart (CytC), lysozyme from chicken egg white (Lys), conalbumin from chicken egg white (Conal), hemoglobin from bovine blood (Hemo), myoglobin from equine heart (Myo), avidin from chicken egg white, subtilisin A from Bacillus, elastase from porcine pancreas, papain from papaya latex, bromelain from pineapple stem, alcohol dehydrogenase from equine liver, trypsinogen from bovine pancreas, catalase from bovine liver, aprotinin from bovine lung, aconitase from porcine heart, albumin from bovine serum, neomycin sulfate (displacer 1), paromomycin sulfate (2), bekanamycin sulfate (3), amikacin sulfate (4), spermine (5), bis(hexamethylene)triamine (7), spermidine (8), 1,4-bis(3-aminopropyl)piperazine (9), diethylenetriamine (10), 4,7,10-trioxa-1,13-tridecanediamine (11), N,Ndiethyl-1,3-propanediamine (12), N,N-diethyldiethylenetriamine (13), 2-(2-aminoethylamino)ethanol (14), spectinomycin dihydrochloride pentahydrate (15), l-arginine methyl ester dihydrochloride (16), l-lysine methyl ester dihydrochloride (17), N-hexylethylenediamine (18), piperazine (19), cyclohexylamine (20), acetic acid (21), malonic acid (22), succinic acid (23), adipic acid (24), isocitric acid lactone (25), trans-aconitic acid (26), 1,2,4-butanetricarboxylic acid (27), 1,2,3,4-butanetetracarboxylic acid (28), glycine (29), 3-guanidinopropionic acid (30), 5-aminovaleric acid (31), pantothenic acid (32), aspartic acid (33), l-␤-homoglutamic acid hydrochloride (34), guanidinosuccinic acid (35), l-2,3-diaminopropionic acid hydrochloride (36), lysine (37), arginine (38), meso-2,3,-diaminosuccinic acid (39), ethylenediaminetetrapropionic acid (40), glycerol (41), threitol (42), adonitol (43), dulcitol (44), malic acid (45), tartaric acid (46), mucic acid …”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…A Jupiter 5 m C4 300A column (4.6 mm × 50 mm) was purchased from Phenomenex (Torrance, CA). Ribonuclease A from bovine pancreas (RNaseA), ribonuclease B from bovine pancreas (RNaseB), ␣-chymotrypsinogen A from bovine pancreas (␣-ChyA), cytochrome C from equine heart (CytC), lysozyme from chicken egg white (Lys), conalbumin from chicken egg white (Conal), hemoglobin from bovine blood (Hemo), myoglobin from equine heart (Myo), avidin from chicken egg white, subtilisin A from Bacillus, elastase from porcine pancreas, papain from papaya latex, bromelain from pineapple stem, alcohol dehydrogenase from equine liver, trypsinogen from bovine pancreas, catalase from bovine liver, aprotinin from bovine lung, aconitase from porcine heart, albumin from bovine serum, neomycin sulfate (displacer 1), paromomycin sulfate (2), bekanamycin sulfate (3), amikacin sulfate (4), spermine (5), bis(hexamethylene)triamine (7), spermidine (8), 1,4-bis(3-aminopropyl)piperazine (9), diethylenetriamine (10), 4,7,10-trioxa-1,13-tridecanediamine (11), N,Ndiethyl-1,3-propanediamine (12), N,N-diethyldiethylenetriamine (13), 2-(2-aminoethylamino)ethanol (14), spectinomycin dihydrochloride pentahydrate (15), l-arginine methyl ester dihydrochloride (16), l-lysine methyl ester dihydrochloride (17), N-hexylethylenediamine (18), piperazine (19), cyclohexylamine (20), acetic acid (21), malonic acid (22), succinic acid (23), adipic acid (24), isocitric acid lactone (25), trans-aconitic acid (26), 1,2,4-butanetricarboxylic acid (27), 1,2,3,4-butanetetracarboxylic acid (28), glycine (29), 3-guanidinopropionic acid (30), 5-aminovaleric acid (31), pantothenic acid (32), aspartic acid (33), l-␤-homoglutamic acid hydrochloride (34), guanidinosuccinic acid (35), l-2,3-diaminopropionic acid hydrochloride (36), lysine (37), arginine (38), meso-2,3,-diaminosuccinic acid (39), ethylenediaminetetrapropionic acid (40), glycerol (41), threitol (42), adonitol (43), dulcitol (44), malic acid (45), tartaric acid (46), mucic acid …”
Section: Methodsmentioning
confidence: 99%
“…Displacement chromatography has been successfully employed for the purification of proteins on multiple different stationary phases [2][3][4][5][6][7][8][9][10][11][12][13]. A wide variety of classes of displacers, such as polyelectrolytes [9], polysacchardies [14], low-molecular-mass dendrimers [11], amino acids [15], antibiotics [16] and aminoglycosidepolyamines [17] have been identified for protein displacement separations.…”
Section: Introductionmentioning
confidence: 99%
“…Displacement chromatography has been successfully employed for the purification of proteins using hydroxyapatite,1, 2 hydrophobic interaction,3 and ion exchange chromatographic systems 4–14. In particular, ion exchange displacement chromatography has attracted significant attention as a powerful technique for the purification of biomolecules 7, 8, 15.…”
Section: Introductionmentioning
confidence: 99%
“…Notwithstanding the reduced environmental impact of employing aqueous-based purifications, there is room to improve the chromatographic techniques employed. AEX chromatography in displacement mode was suggested several years ago. However, the development was performed in an era when full understanding of the various process impurities was not available, and no further efforts have been made since. Displacement chromatography can be very efficient and generate concentrated, purified product, potentially with significant reduction in solvent usage, so a revisit may be warranted.…”
Section: Improving Sustainability In the Short Termmentioning
confidence: 99%