1987
DOI: 10.1016/s0021-9258(19)75664-6
|View full text |Cite
|
Sign up to set email alerts
|

Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

6
66
0
1

Year Published

2000
2000
2021
2021

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 205 publications
(73 citation statements)
references
References 56 publications
6
66
0
1
Order By: Relevance
“…The m/z value of phthalate was 158.92. Overall, the tR and an m/z values are consistent with the product being cis-4,5-dihydrodiol phthalate (20). The identity of the product was further confirmed by its transformation to protocatechuate by PhtCD as described below.…”
Section: Purification and Biochemical Activitysupporting
confidence: 60%
See 3 more Smart Citations
“…The m/z value of phthalate was 158.92. Overall, the tR and an m/z values are consistent with the product being cis-4,5-dihydrodiol phthalate (20). The identity of the product was further confirmed by its transformation to protocatechuate by PhtCD as described below.…”
Section: Purification and Biochemical Activitysupporting
confidence: 60%
“…Structural studies on ROs such as naphthalene dioxygenase (NDO) ( 10 , 15 , 16 , 17 , 18 , 19 ) have identified key features that are responsible for substrate specificity and have provided valuable insight into the catalytic mechanism of these enzymes ( 12 ). For example, a small N-terminal domain harbors the [2Fe-2S] cluster while the catalytic center occurs in a larger C-terminal domain ( 20 ). All ROs characterized to date are either α 3 trimers or have an additional small subunit to form an α 3 β 3 hexamer.…”
mentioning
confidence: 99%
See 2 more Smart Citations
“…Las oxigenasas Rieske/mononuclear están ampliamente distribuidas en bacterias (proteobacterias, actinobacterias, algunas cianobacterias y firmicutes) e incluso en algunas arqueas (Chakraborty et al, 2012) se ha descrito que estas enzimas están presentes también en bacterias termófilas, sin embargo, hasta el momento no se ha reportado la función de alguna de ellas (Chakraborty, Suzuki-Minakuchi, Okada & Nojiri, 2017). La mayoría de las oxigenasas Rieske/mononuclear presentes en bacterias participan en rutas de degradación de compuestos aromáticos policíclicos, como el naftaleno (Ensley, Gibson, & Laborde, 1982;, carbazol (Sato et al, 1997), bifenil (Haddock & Gibson, 1995), benzoato (Wolfe et al, 2002), cumeno (Dong et al, 2005), oxoquinolina (Rosche, Tshisuaka, Fetzner & Lingens, 1995), ftalato (Batie, Lahaie & Ballous, 1987), benzeno (Mason, Butler, Cammack & Shergill, 1997), tolueno (Jiang, Parales, & Gibson, 1999), entre otros. También se han encontrado oxigenasas Rieske/mononuclear en bacterias que oxidan compuestos no aromáticos como la glicina betaína (Shao, Guo, Zhang, Yu, Zhao & Pang, 2018), el cloruro de benzalconio (Ertekin, Konstantinidis & Tezel, 2017), la prolina betaína (Daughtry et al, 2012) y la carnitina (Zhu et al, 2014).…”
Section: Clasificación Y Distribución Filogenética De Las Oxigenasas Rieske/mononuclearunclassified