To better understand the mechanism of leukocyte migration in complex environments, model extracellular matrices were prepared using gelatin, Hanks' solution, Bodipy-BSA (fluorescent upon proteolysis), and dihydrotetramethylrosamine or hydroethidine (fluorescent upon oxidation). Using quantitative microfluorometry, neutrophil-mediated extracellular pulses of reactive oxygen metabolites (ROMs) and pericellular proteolysis were periodically observed showing that these functions occur as quantal bursts. However, chronic granulomatous disease neutrophils, which do not produce ROMs, did not display ROM deposition. Matrices show an alternating pattern of green (proteolytic) and red (oxidative) fluorescence, indicating these functions are out of phase. Electric fields phase-matched with metabolic oscillations, which increase the amplitude of intracellular NAD(P)H oscillations, increase ROM deposition and pericellular proteolysis; this further supports the link between intracellular chemical oscillators and extracellular functions. This phase relationship may allow ROMs to inactivate protease inhibitors, followed by protease activation.