2021
DOI: 10.33961/jecst.2021.00178
|View full text |Cite
|
Sign up to set email alerts
|

Pt Deposits on Bi-Modified Pt Electrodes of Nanoparticle and Disk: A Contrasting Behavior of Formic Acid Oxidation

Abstract: This work presents a contrasting behavior of formic acid oxidation (FAO) on the Pt and Bi deposits on different Pt substrates. Using irreversible adsorption method, Bi and Pt were sequentially deposited on Pt electrodes of nanoparticle (Pt NP) and disk (Pt disk). The deposited layers of Bi and Pt on the Pt substrates were characterized with X-ray photoelectron spectroscopy, transmission microscopy and scanning tunneling microscopy. The electrochemical behaviors and FAO enhancements of Pt NP and Pt disk with de… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 40 publications
0
2
0
Order By: Relevance
“…5), indicating that the current is certainly ascribable to an FAO path occurring on oxidized surfaces of I/Bi/Pt(poly) and Pt/I/Bi/Pt(poly). This particular FAO process occurring at a high potential of ~0.8 V should be distinguished from the well-known FAO routes taking place on metallic surfaces of Pt and Bimodified Pt below 0.4 V. Therefore, the FAO process of interest has been proposed to be oxidized surface path by us [31,36]. On such oxidized electrode surfaces, some surface oxygen anions formed in the presence of Bi may promote FAO via bifunctional mechanism: for instance, surface oxygen anions (e.g., O δ-, δ ≤ 2) may assist to de-hydrogenate HCOOH in some way (or HCOOH + 2O δ-→ CO 2 + 2OH (δ-1)-+ 2e).…”
Section: Resultsmentioning
confidence: 96%
See 1 more Smart Citation
“…5), indicating that the current is certainly ascribable to an FAO path occurring on oxidized surfaces of I/Bi/Pt(poly) and Pt/I/Bi/Pt(poly). This particular FAO process occurring at a high potential of ~0.8 V should be distinguished from the well-known FAO routes taking place on metallic surfaces of Pt and Bimodified Pt below 0.4 V. Therefore, the FAO process of interest has been proposed to be oxidized surface path by us [31,36]. On such oxidized electrode surfaces, some surface oxygen anions formed in the presence of Bi may promote FAO via bifunctional mechanism: for instance, surface oxygen anions (e.g., O δ-, δ ≤ 2) may assist to de-hydrogenate HCOOH in some way (or HCOOH + 2O δ-→ CO 2 + 2OH (δ-1)-+ 2e).…”
Section: Resultsmentioning
confidence: 96%
“…In direct route (Fig. 1(b)), additional Pt would deposit on two different places: Bi islands and plain Pt sites around Bi islands [31,36]. The FAO behavior on this particular Pt-modified Bi/Pt disk (designated Pt/Bi/Pt disk) is anticipated to simultaneously come from the Pt deposits on Bi islands and the Pt deposits on plain Pt sites.…”
Section: Introductionmentioning
confidence: 99%