2024
DOI: 10.1177/10775463241276712
|View full text |Cite
|
Sign up to set email alerts
|

Proportional-derivative control and motion stability analysis of a 16-pole legs rotor-active magnetic bearings system

Yigen Ren,
Wensai Ma

Abstract: This paper analyzes the motion stability of a 16-pole rotor-active magnetic bearings (rotor-AMB) system and investigates the complex vibrations under a proportional-derivative (PD) controller. First, electromagnetic theory and Newton’s second law are applied to derive the two-degree-of-freedom differential governing equations for the 16-pole rotor-AMB system, incorporating the PD control terms. The resulting differential equations include parametrically excited, quadratic nonlinear, and cubic nonlinear terms. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 33 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?