2013
DOI: 10.2320/matertrans.m2013200
|View full text |Cite
|
Sign up to set email alerts
|

Properties of Nanostructured TiCN and TiCN–TiAl Hard Materials Sintered by the High-Frequency Induction-Heating

Abstract: In the case of cemented TiCN, Ni or Co is added as a binder for the formation of composite structures. However, the high cost of Ni or Co and the low corrosion resistance of the TiCNNi cermet have generated interest in recent years for alternative binder phases. In this study, TiAl was used as a binder and consolidated by the high-frequency induction heated sintering (HFIHS) method. Highly dense TiCNTiAl with a relative density of up to 100% was obtained within 2 min by HFIHS under a pressure of 80 MPa. The me… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2014
2014
2020
2020

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 20 publications
(7 reference statements)
0
1
0
Order By: Relevance
“…However, compared with metal materials [5], the brittleness and impact toughness of this material still has obvious shortcomings that restrict its development for widespread application. In recent years, a lot of methods, such as spark plasma sintering technique (SPS) [6,7], hot-pressing sintering [8], high-frequency induction heated sintering method [9,10], liquid phase sintering [11] and the combination of powder metallurgy technique and colloidal method [12], etc., have been used to improve the fracture toughness of Ti(C,N)-based cermets. The SPS technique has the advantages of low cost, rapid response and high output.…”
Section: Introductionmentioning
confidence: 99%
“…However, compared with metal materials [5], the brittleness and impact toughness of this material still has obvious shortcomings that restrict its development for widespread application. In recent years, a lot of methods, such as spark plasma sintering technique (SPS) [6,7], hot-pressing sintering [8], high-frequency induction heated sintering method [9,10], liquid phase sintering [11] and the combination of powder metallurgy technique and colloidal method [12], etc., have been used to improve the fracture toughness of Ti(C,N)-based cermets. The SPS technique has the advantages of low cost, rapid response and high output.…”
Section: Introductionmentioning
confidence: 99%