2017
DOI: 10.3389/fendo.2017.00329
|View full text |Cite
|
Sign up to set email alerts
|

Promoting Glucose Transporter-4 Vesicle Trafficking along Cytoskeletal Tracks: PAK-Ing Them Out

Abstract: Glucose is the principal cellular energy source in humans and maintenance of glucose homeostasis is critical for survival. Glucose uptake into peripheral skeletal muscle and adipose tissues requires the trafficking of vesicles containing glucose transporter-4 (GLUT4) from the intracellular storage compartments to the cell surface. Trafficking of GLUT4 storage vesicles is initiated via the canonical insulin signaling cascade in skeletal muscle and fat cells, as well as via exercise-induced contraction in muscle… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
28
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 34 publications
(29 citation statements)
references
References 165 publications
1
28
0
Order By: Relevance
“…While some have suggested that an intact microtubule system is important for the insulin-induced actin remodeling prior to the transporter translocation, some studies using agents that inhibit microtubule polymerization has suggested against this (Fletcher et al, 2000; Olson et al, 2001; Liu et al, 2013). Nonetheless, it has been shown that GLUT4 storage vesicles travel along microtubules via kinesins and actin filaments, from the perinuclear region, bringing them into close proximity with the plasma membrane SNARE proteins (Tunduguru and Thurmond, 2017). Newly formed GLUT4 vesicles also are transported from the plasma membrane to the cell interior by the microtubule-based motor protein dynein.…”
Section: Tau Protein and Insulin Signaling In Peripheral Tissuesmentioning
confidence: 99%
“…While some have suggested that an intact microtubule system is important for the insulin-induced actin remodeling prior to the transporter translocation, some studies using agents that inhibit microtubule polymerization has suggested against this (Fletcher et al, 2000; Olson et al, 2001; Liu et al, 2013). Nonetheless, it has been shown that GLUT4 storage vesicles travel along microtubules via kinesins and actin filaments, from the perinuclear region, bringing them into close proximity with the plasma membrane SNARE proteins (Tunduguru and Thurmond, 2017). Newly formed GLUT4 vesicles also are transported from the plasma membrane to the cell interior by the microtubule-based motor protein dynein.…”
Section: Tau Protein and Insulin Signaling In Peripheral Tissuesmentioning
confidence: 99%
“…Perturbation of glucose uptake into skeletal muscle causes hyperglycemia, which eventually damages vessels and organs, such as kidney and heart [10]. Intracellular GLUT4 localization is controlled by small G protein Rabs, such as Rab8a and Rab14, which are physically associated with GLUT4 vesicles, and GTP-bound active Rabs are necessary to facilitate translocation of GLUT4 [25,26]. TBC1D1 and TBC1D4 are Rab-GTPase-activating proteins (GAPs) that negatively control GLUT4 trafficking through their Rab-GAP activities under basal conditions [25,27,28].…”
Section: Discussionmentioning
confidence: 99%
“…Human erythroid progenitors (pro-EBLs, early basophilic EBLs) express the IGF1R, and not the InsR, which changes during differentiation when the InsR becomes the prominent receptor [57]. InsR signaling is particularly important to control trafficking of GLUT4 glucose transporters to the cell membrane [58]. Late EBLs and mature RBCs depend on glycolysis and EBLs express high levels of glucose transporters [59].…”
Section: Growth Factor-binding Tyrosine Kinase Receptorsmentioning
confidence: 99%