2014
DOI: 10.1134/s1063784214080106
|View full text |Cite
|
Sign up to set email alerts
|

Promising source of high-power broadband microwave pulses with radiation frequency variable up to two octaves

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0
1

Year Published

2016
2016
2024
2024

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 8 publications
0
2
0
1
Order By: Relevance
“…The parameters of the problem are: magnetic field 𝐵 = 1 T = 10 4 Gs, diode length 𝐿 = 30 cm, cathode radius 𝑅 𝐶 = 1 cm, anode radius 𝑅 𝐴 = 2.72 cm, cathode potential 𝑈 = 511 kV = 1.70 ⋅ 10 3 CGS. For the current 𝐼 of a steady beam, the Fedosov's empirical law is valid (see [13] and the cited literature)…”
Section: Problem Statementmentioning
confidence: 99%
“…The parameters of the problem are: magnetic field 𝐵 = 1 T = 10 4 Gs, diode length 𝐿 = 30 cm, cathode radius 𝑅 𝐶 = 1 cm, anode radius 𝑅 𝐴 = 2.72 cm, cathode potential 𝑈 = 511 kV = 1.70 ⋅ 10 3 CGS. For the current 𝐼 of a steady beam, the Fedosov's empirical law is valid (see [13] and the cited literature)…”
Section: Problem Statementmentioning
confidence: 99%
“…等离子体束的波导中激发的等离子体慢波发生契伦柯夫共振相互作用, 使得电子 束的能量向等离子体慢波转移,从而实现波的放大 [3,4] 。与为提高器件输出性能 而填充等离子体的电真空相对论微波器件不同 [5][6][7] ,PRMG中的等离子体束是实 现器件运行的必要条件,辐射频率的调节可以通过改变等离子体密度来实现。通 过束波互作用区结构的设计和工作参数的选取,PRMG能以普通放大器或者振荡 器形式工作, 如等离子体相对论微波放大器 [8] 或振荡器 [9] (PRMA,Plasma Relativistic Microwave Amplifier 或 PRMO , Plasma Relativistic Microwave Oscillator),也能够以噪声放大器的形式工作,即PRNA。PRNA可以产生超宽 带微波辐射,与此同时,PRNA还具有输出功率高和可重复频率运行等潜质。因 此,PRNA在脉冲雷达、通信、电子对抗、物体探测、地质以及医学等诸多领域 均具有良好的应用前景 [10,11] 。 与传统的利用快速开关直接把直流电能转换成微波输出的高功率超宽带电磁 脉冲辐射源 [12] (EMPS,electromagnetic pulse sources)相比,PRNA具有以下优 势:不同脉冲的辐射频率可以在较大范围内变化,且脉冲宽度不随中心频率的增 加而缩短;单脉冲能量可以较大,甚至可以达到10焦耳 [13] 。当然,超宽带EMPS 无需相对论电子束,也就不需高能强流电子束源和真空电子设备,原理相对简单, 成本较低。因此,我们可以根据实际需求,合理选取超宽带微波的产生方式。 PRNA的理论和实验研究以及输出性能的提升将可能为某些重要应用提供更适 合的宽带微波源。 与同属PRMG器件的其他器件相比,PRMA工作时需要微波种子源的激励, PRMO调频方式为阶跃型调频,不能在频率区间内连续调频,阶跃宽度主要由波 束互作用区具体结构参数决定。PRNA则可以实现在连续频谱内的调频,且无需 微波种子源和反馈机制,因此结构更加紧凑。但相对于PRMA和PRMO,PRNA 的提出相对较晚。2013年Ernyleva等学者首次提出了PRNA [14,15] ,数值模拟得到 了频率范围为4-17GHz、 带宽为2GHz、 功率为150MW和效率为15%的微波输出。 随后, 科学家对PRNA进行了进一步的理论研究, 模拟得到了频率范围2-12GHz、 功率20MW、效率4-9% [16] 和频率范围3-9GHz、功率40MW、效率约8% [17] 的微波 输出。2019年,文献 [13]首次进行了PRNA的实验研究。实验结果证实了PRNA 产生连续谱超宽带的可行性, 并获得了单脉冲10J的微波能量, 功率百MW量级, 输出微波的中心频率可以通过改变等离子体束密度进行调节,频率范围为 2-3.5GHz。随后,通过进一步增加等离子体束密度,实验观察到微波中心频率可 以从3GHz提高到25GHz [18][19][20] the relativistic electron beam, 3 is the plasma beam and 4 is the particle collector 模拟过程中具体参数的选取参考了相关的实验和文献 [14,15] ,除非另有说明, 选取的基本参数为:互作用区半径R =1.8cm,收集极半径R 0 =1.2cm,环形等离子 体束通过低能电子束电离气压约为10 -4 -10 -3 Torr惰性气体产生 [21] ,等离子体中组 分为电子和氙离子,等离子体束半径、径向厚度和密度分别为 =1.05cm…”
unclassified
“…More accurate calculations directed to practical implementation of the proposed microwave oscillator will be performed taking into account the indicated weak longitudinal magnetic field using the particlein-cell method for all plasma electrons and ions, considering their motion, as was done, e.g., in [7]. Nevertheless, the possibility of developing the high-power microwave oscillator without strong magnetic field, i.e., with a comparatively high efficiency and, simultaneously, with wide radiation frequency tuning, was demonstrated by the results presented above.…”
mentioning
confidence: 99%