“…15), we have for K ∈ K n o and L ∈ S n o ,V p (K, Γ µ p L) = 1 n S n−1 h(Γ µ p L, u) p dS p (K, u) = 1 n(n + p)V n (L) S n−1 S n−1 h(Z µ p (u), v) p ρ(L, v) n+p dv dS p (K, u).Using Fubini's theorem, definition (3.12) of Φ µ p , and (2.13) yields(n + p)V n (L) 2 V p (K, Γ µ p L) = 1 n S n−1 h(Φ µ p K, v) p ρ(L, v) n+p dv = Ṽ−p (L, Φ µ, * p K). (5.7)Taking now K = Γ µ p L, we obtainV n (Γ µ p L) = 2 (n + p)V n (L)Ṽ−p (L, Φ µ, * p Γ µ p L).…”