2019
DOI: 10.1146/annurev-biophys-052118-115259
|View full text |Cite
|
Sign up to set email alerts
|

Programming Structured DNA Assemblies to Probe Biophysical Processes

Abstract: Structural DNA nanotechnology is beginning to emerge as a widely accessible research tool to mechanistically study diverse biophysical processes. Enabled by scaffolded DNA origami in which a long single strand of DNA is weaved throughout an entire target nucleic acid assembly to ensure its proper folding, assemblies of nearly any geometric shape can now be programmed in a fully automatic manner to interface with biology on the 1–100-nm scale. Here, we review the major design and synthesis principles that have … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
64
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 59 publications
(68 citation statements)
references
References 213 publications
0
64
0
2
Order By: Relevance
“…Inspired by Nature, bottom‐up strategies often exploit the self‐assembly capacity of various building blocks to produce ordered structures such as liposomes, polymeric nanoparticles, and viral protein mimics . Although these structures exhibit a relatively high level of uniformity in terms of size, shape, and functionality, they often lack diverse shapes and the potential for asymmetric and orthogonal molecular modifications . DNA origami technology, however, provides the opportunity to simultaneously incorporate chemically diverse functional components with controlled stoichiometry to design nanoobjects with ultimate molecular control…”
Section: Figurementioning
confidence: 99%
See 1 more Smart Citation
“…Inspired by Nature, bottom‐up strategies often exploit the self‐assembly capacity of various building blocks to produce ordered structures such as liposomes, polymeric nanoparticles, and viral protein mimics . Although these structures exhibit a relatively high level of uniformity in terms of size, shape, and functionality, they often lack diverse shapes and the potential for asymmetric and orthogonal molecular modifications . DNA origami technology, however, provides the opportunity to simultaneously incorporate chemically diverse functional components with controlled stoichiometry to design nanoobjects with ultimate molecular control…”
Section: Figurementioning
confidence: 99%
“…[1] Although these structures exhibit a relatively high level of uniformity in terms of size, shape, and functionality, they often lack diverse shapes and the potential for asymmetric and orthogonal molecular modifications. [2] DNA origami technology, however, provides the opportunity to simultaneously incorporate chemically diverse functional components with controlled stoichiometry to design nanoobjects with ultimate molecular control. [3] Rationally designed DNA origami objects originate from the sequence-specific binding properties of DNA: a long, single-stranded DNA scaffold is folded into a distinct archi-tecture guided by a set of short staple strands, which hybridize at programmed positions along this scaffold.…”
mentioning
confidence: 99%
“…Gemäß dem Vorbild der Natur wird bei der sogenannten Bottom‐up‐Methode die Fähigkeit diverser Grundbausteine zur Selbstorganisation genutzt, um hochgradig geordnete Strukturen herzustellen, wie etwa Liposome, polymerbasierte Nanopartikel oder virusähnliche Proteinanaloga . Obwohl diese Strukturen ein relativ hohes Maß an Einheitlichkeit in Größe, Form und Funktionalität aufweisen, ist die Verwirklichung asymmetrischer und orthogonaler molekularer Modifikationen häufig nicht zu erreichen . Im Gegensatz dazu bietet die DNA‐Origami‐Technik die einzigartige Möglichkeit, Nanoobjekte mit unübertroffener Strukturpräzision herzustellen.…”
Section: Figureunclassified
“…[1] Obwohl diese Strukturen ein relativ hohes Maß an Einheitlichkeit in Grçße, Form und Funktionalität aufweisen, ist die Verwirklichung asymmetrischer und orthogonaler molekularer Modifikationen häufig nicht zu erreichen. [2] Im Gegensatz dazu bietet die DNA-Origami-Technik die einzigartige Mçglichkeit, Nanoobjekte mit unübertroffener Strukturpräzision herzustellen. Der Vorteil liegt dabei in der Fähigkeit, funktionelle Komponenten unterschiedlicher chemischer Natur gleichzeitig anzubringen.…”
unclassified
“…The two major classes of DNA origami developed over the past decade are denselypacked, brick-like assemblies 4 and wireframe assemblies 5 . The development of top-down sequence design algorithms has enabled facile prototyping of the latter class of objects [6][7][8][9] , and scalable enzymatic and bacterial production of single-stranded DNA scaffolds with custom sequence and length have paved the way for pre-clinical and clinical studies [10][11][12][13] . DNA nanostructures have further been deployed in a variety of preliminary studies as therapeutic delivery platforms.…”
Section: Introductionmentioning
confidence: 99%