2023
DOI: 10.1109/access.2023.3343467
|View full text |Cite
|
Sign up to set email alerts
|

Probabilistic Load Forecasting With Reservoir Computing

Michele Guerra,
Simone Scardapane,
Filippo Maria Bianchi

Abstract: Some applications of deep learning require not only to provide accurate results but also to quantify the amount of confidence in their prediction. The management of an electric power grid is one of these cases: to avoid risky scenarios, decision-makers need both precise and reliable forecasts of, for example, power loads. For this reason, point forecasts are not enough hence it is necessary to adopt methods that provide an uncertainty quantification. This work focuses on reservoir computing as the core time se… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 50 publications
0
0
0
Order By: Relevance