A detailed characterization of the lysine biosynthetic pathway in plants is yet to be completed. It is, however, assumed that the diaminopimelic acid pathway exists in the plant kingdom, as commonly described forEscherichia coli.Modification and refinement of lytic complementation, a technique previously utilized in bacterial systems, facilitated the isolation of a functional Diaminopimelate Dehydrogenase gene from aGlycine max nuclear gene library. The isolated gene codes for the enzyme meso-diaminopimelate dehydrogenase. The coding capacity for the enzyme was originally contained on a 6.6kb fragment in a Charon 4a soybean gene bank. Subcloning of the 6.6kb fragment resulted in the recombinant plasmid pMW75. Subsequent subcloning resulted in a 4.05 kb fragment contained in pLW14. One region of homology was observed upon hybridization to EcoR1 digested soybean DNA. Homologous sequences were also observed in Triticum DNA.Meso-diaminopimelate dehydrogenase activity was demonstrated inGlycine max embryos. Maximum enzymatic activity of the cloned enzyme was observed at a pH of 8.0. The enzyme encoded by the soybean gene has an apparent molecular weight of 67 000.