2013
DOI: 10.1155/2013/515704
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of the Styrene Butadiene Rubber Performance by Emulsion Polymerization Using Backpropagation Neural Network

Abstract: The effect of the amounts of initiator, emulsifier, and molecular weight regulator on the styrene butadiene rubber performance was investigated, based on the industrial original formula. It was found that the polymerization rate was increased with the increased dosage of initiator and emulsifier, and together with replenishing molecular weight regulator will make the Mooney viscosity of rubber meet the national standard when the conversion rate reaches 70%. The backpropagation neural network was trained by the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2013
2013
2013
2013

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 4 publications
0
1
0
Order By: Relevance
“…Synaptic plasticity is the basis for learning in all ANNs. As long as there is nonvariant activation function, accurate classification based on certain vector input values can be implemented with the help of a BP learning algorithm like gradient descent [1,2].…”
Section: Introductionmentioning
confidence: 99%
“…Synaptic plasticity is the basis for learning in all ANNs. As long as there is nonvariant activation function, accurate classification based on certain vector input values can be implemented with the help of a BP learning algorithm like gradient descent [1,2].…”
Section: Introductionmentioning
confidence: 99%