2009
DOI: 10.1016/j.ijrmms.2008.09.002
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
59
0
3

Year Published

2011
2011
2024
2024

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 279 publications
(67 citation statements)
references
References 29 publications
2
59
0
3
Order By: Relevance
“…Furthermore, the low accuracy of the MLR approach in estimating the measured SSSS and GMD values might be associated with the sample distribution, spatial variation, and the study area scale effects. The major conceptual limitation of all regression techniques that is, one can only ascertain relationships but never be sure about underlying causal mechanism, should be also considered (Yilmaz and Yuksek, 2009). …”
Section: Resultsmentioning
confidence: 99%
“…Furthermore, the low accuracy of the MLR approach in estimating the measured SSSS and GMD values might be associated with the sample distribution, spatial variation, and the study area scale effects. The major conceptual limitation of all regression techniques that is, one can only ascertain relationships but never be sure about underlying causal mechanism, should be also considered (Yilmaz and Yuksek, 2009). …”
Section: Resultsmentioning
confidence: 99%
“…Adaptive NeuroFuzzy Inference Systems) unutar programskih paketa Matlab Version 7,1 i SPSS 10,0. Na osnovi usporedbe rezultata došli su do zaključka da u procjeni UCS i E za stijene gipsa najbolje rezultate postiže neizrazita vrsta neuronskih mreža ANFIS, zatim model s unaprjeđenom vrstom neuronskih mreža, a najslabije rezultate postiže višeregresijski model [33]. Heidari i suradnici opisali su upotrebu neuronskih mreža MLP i RBF arhitekture u procjeni E za vapnence, dolomite i lapore s područja Lorestan u Iranu.…”
Section: Procjena Pomoću Neuronskih Mrežaunclassified
“…Manouchehrian je sa suradnicima izradio model na bazi umjetnih neuronskih mreža za procjenu jednoosne tlačne čvrstoće pješčenjaka pomoću petrografskih karakteristika [35]. U publikacijama [29,[32][33][34][35][36]46] uspoređeni su modeli višestruke regresije i neuronskih mreža te je zaključeno da neuronske mreže daju bolje rezultate procjena. Usporedba se obavljala na temelju koeficijenta korelacije između izmjerenih i procijenjenih veličina UCS i E te veličine korijena srednje kvadratne pogreške (engl.…”
Section: Procjena Pomoću Neuronskih Mrežaunclassified
“…Another reason for the low accuracy of the MLR approach in estimating the measured SSSS values might be associated with the sample distribution, spatial variation, and study area scale effects. Furthermore, the major conceptual limitation of all regression techniques, that one can only ascertain relationships, but never be sure about the underlying causal mechanism, should be considered (Yilmaz and Yuksek 2009). Sobhani et al (2010) also reported that the regression models may have low accuracy and prediction capability.…”
Section: Regression Modelmentioning
confidence: 99%