2023
DOI: 10.18632/aging.204866
|View full text |Cite
|
Sign up to set email alerts
|

Predicting lifespan-extending chemical compounds for C. elegans with machine learning and biologically interpretable features

Abstract: Recently, there has been a growing interest in the development of pharmacological interventions targeting ageing, as well as in the use of machine learning for analysing ageing-related data. In this work, we use machine learning methods to analyse data from DrugAge, a database of chemical compounds (including drugs) modulating lifespan in model organisms. To this end, we created four types of datasets for predicting whether or not a compound extends the lifespan of C. elegans (the most f… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 67 publications
0
0
0
Order By: Relevance