2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS) 2015
DOI: 10.1109/icsess.2015.7339210
|View full text |Cite
|
Sign up to set email alerts
|

Predicting fruit maturity stage dynamically based on fuzzy recognition and color feature

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0
1

Year Published

2016
2016
2024
2024

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 15 publications
(6 citation statements)
references
References 15 publications
0
4
0
1
Order By: Relevance
“…Di seluruh dunia, tomat juga merupakan tanaman hortikultura yang penting, dan merupakan buah yang paling banyak diekspor [3], [4]. Mengetahui tingkat kematangan tomat penting untuk tujuan yang berbeda seperti prioritas transportasi ke pasar dan penyimpanan berdasarkan tahap kematangan tomat [5]. Secara tradisional, tomat diklasifikasikan berdasarkan kematangan fisiologisnya dengan penyortiran manual.…”
Section: Pendahuluanunclassified
“…Di seluruh dunia, tomat juga merupakan tanaman hortikultura yang penting, dan merupakan buah yang paling banyak diekspor [3], [4]. Mengetahui tingkat kematangan tomat penting untuk tujuan yang berbeda seperti prioritas transportasi ke pasar dan penyimpanan berdasarkan tahap kematangan tomat [5]. Secara tradisional, tomat diklasifikasikan berdasarkan kematangan fisiologisnya dengan penyortiran manual.…”
Section: Pendahuluanunclassified
“…For example, tomatoes can be harvested in the physiological maturity stage (green), which can complete the ripening after harvest. Therefore, it is necessary to accurately locate and distinguish the maturity of tomatoes for different harvesting purposes [17][18][19]. Zhang et al improved the deep learning-based classification method to classify tomato maturity by inserting two layers of max-pooling in CNN layers.…”
Section: Introductionmentioning
confidence: 99%
“…To realize real-time accurate recognition of the maturity of fruits and vegetables, Fadhel and Al-Shamma [18] proposed a field programmable gate array (FPGA) as the parallel hardware structure, aiming to reduce the high time cost of color thresholding and k-means clustering (KMC). Xiao et al [19] predicted the maturation stage of tomato fruits according to surface color, and managed to forecast the surface color variation based on temperature conditions. Cai and Zhao [20] developed a mature fruit recognition technique in natural scenes, which compares the color models of hue-saturation-intensity (HSI) system.…”
Section: Introductionmentioning
confidence: 99%