1970
DOI: 10.4153/cmb-1970-048-5
|View full text |Cite
|
Sign up to set email alerts
|

Power-Associative Algebras in which Every Subalgebra is a Left Ideal

Abstract: By an L-algebra we mean a power-associative nonassociative algebra (not necessarily finite-dimensional) over a field F in which every subalgebra generated by a single element is a left ideal. An H-algebra is a power-associative algebra in which every subalgebra is an ideal. The H-algebras were characterized by D. L. Outcalt in [2]. Let Sα be the semigroup with cardinality … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 3 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?