2023
DOI: 10.1088/1755-1315/1124/1/012004
|View full text |Cite
|
Sign up to set email alerts
|

Potential applications of deep learning in automatic rock joint trace mapping in a rock mass

Abstract: In blasted rock slopes and underground openings, rock joints are visible in different forms. Rock joints are often exposed as planes confining rock blocks and visible as traces on a well-blasted, smooth rock mass surface. A realistic rock joint model should include both visual forms of joints in a rock mass: i.e., both joint traces and joint planes. Imaged-based 2D semantic segmentation using deep learning via the Convolutional Neural Network (CNN) has shown promising results in extracting joint traces in a ro… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 25 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?