The Tyrone Plutonic Group of Northern Ireland represents the upper portions of a tectonically dissected suprasubduction-zone ophiolite accreted to the composite Laurentian margin during the Middle Ordovician. Understanding its development and relationship to the Tyrone Central Inlier, an outboard fragment of relatively high-grade, peri-Laurentian continental crust, is essential for reconstructing the closure of the Iapetus Ocean. The Tyrone Plutonic Group is composed of tectonized layered, isotropic and pegmatitic gabbros, sheeted dolerite dykes and rare pillow lavas. New U–Pb zircon thermal ionization mass spectrometry geochronology has yielded an age of 483.68 ± 0.81 Ma from pegmatitic gabbro. Geochemical characteristics, Nd and Sr isotope systematics, and zircon inheritance indicate that the Tyrone Plutonic Group formed above a north-dipping subduction zone, by the propagation of a spreading centre into a microcontinental block. Synkinematic, calc-alkaline tonalitic to granitic material preserved in the contact zone between the Tyrone Plutonic Group and the Tyrone Central Inlier has produced pressure estimates of 2.3–4.0 ± 0.6 kbar and temperatures of 525–610 °C. Coeval arc–ophiolite accretion at
c
. 470 Ma may explain how sillimanite-grade metamorphic conditions were reached locally in the underlying Tyrone Central Inlier. Strong temporal, geochemical and lithological similarities exist to the Annieopsquotch Ophiolite Belt of Newfoundland.
Supplementary materials:
Petrographic photographs, whole-rock, isotopic and mineral geochemical data, and U–Th–Pb isotopic data are available at
www.geolsoc.org.uk/SUP18646
.