The detection of photons with energies greater than a few tenths of an MeV, interacting via Compton scattering and/or pair production, faces a number of difficulties. The reconstruction of single-scatter Compton events can only determine the direction of the incoming photon to a cone, or an arc thereof and the angular resolution of pair-conversion telescopes is badly degraded at low energies. Both of these difficulties are partially overcome if the density of the interaction medium is low. Also no precise polarization measurement on a cosmic source has been obtained in that energy range to date. We present the potential of low-density high-precision homogeneous active targets, such as time-projection chambers (TPC) to provide an unambiguous photon direction measurement for Compton events, an angular resolution down to the kinematic limit for pair events, and the polarimetry of linearly polarized radiation.