2022
DOI: 10.2174/2666255813999200831102550
|View full text |Cite
|
Sign up to set email alerts
|

Position and Pose Measurement of 3-PRS Ankle Rehabilitation Robot Based on Deep Learning

Abstract: Introduction: The position and pose measurement of the rehabilitation robot plays a very important role in patient rehabilitation movement, and the non-contact real-time robot position and pose measurement is of great significance. Rehabilitation training is a relatively complicated process, so it is very important to detect the training process of the rehabilitation robot in real time and accuracy. The method of the deep learning has a very good effect on monitoring the rehabilitation robot state. Methods: … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 55 publications
0
1
0
Order By: Relevance
“…The mechanism is driven by a servo cylinder that can achieve the ankle’s dorsiflexion/plantarflexion and inversion/eversion and the rehabilitation movement of the toe to enhance the ligament strength of the toe joint. In 2020, Chen et al [14] designed a 3-PRS ankle rehabilitation robot and analyzed a force/position control strategy. Zeng et al [15] proposed a 4-DOF completely decoupled ankle-foot rehabilitation robot based on a 2-CPRR-PU/R series–parallel hybrid mechanism, which can realize the independence of mechanism control in 2020.…”
Section: Introductionmentioning
confidence: 99%
“…The mechanism is driven by a servo cylinder that can achieve the ankle’s dorsiflexion/plantarflexion and inversion/eversion and the rehabilitation movement of the toe to enhance the ligament strength of the toe joint. In 2020, Chen et al [14] designed a 3-PRS ankle rehabilitation robot and analyzed a force/position control strategy. Zeng et al [15] proposed a 4-DOF completely decoupled ankle-foot rehabilitation robot based on a 2-CPRR-PU/R series–parallel hybrid mechanism, which can realize the independence of mechanism control in 2020.…”
Section: Introductionmentioning
confidence: 99%