2009
DOI: 10.1214/08-aihp188
|View full text |Cite
|
Sign up to set email alerts
|

Poisson convergence for the largest eigenvalues of heavy tailed random matrices

Abstract: Onétudie la loi des plus grandes valeurs propres de matrices aléatoires symétriques réelles et de covariance empirique quand les coefficients des matrices sontà queue lourde. Oń etend le résultat obtenu par A. Soshnikov dans [18] et on montre que le comportement asymptotique des plus grandes valeurs propres est déterminé par les plus grandes entrées de la matrice.Abstract. We study the statistics of the largest eigenvalues of real symmetric and sample covariance matrices when the entries are heavy tailed. Exte… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

4
168
0
3

Year Published

2009
2009
2024
2024

Publication Types

Select...
4
2
2

Relationship

1
7

Authors

Journals

citations
Cited by 94 publications
(175 citation statements)
references
References 18 publications
4
168
0
3
Order By: Relevance
“…Soshnikov analyzed the setting when the tail index α (the rate at which tails of the probability distribution decay) of the entries is between 0 and 2. Auffinger et al (2009) extended the results by Soshnikov (2004), to prove that for α A ð0; 4Þ, and for both Wigner and Wishart-type matrices, the point process of the largest eigenvalues (properly normalized) converges to an inhomogeneous Poisson point process whose intensity function is determined by the tail index of the (common) distribution of the entries of the matrix. A version of these results was also proved by Biroli et al (2007) …”
Section: Matrix Ensembles With Heavy-tailsmentioning
confidence: 76%
“…Soshnikov analyzed the setting when the tail index α (the rate at which tails of the probability distribution decay) of the entries is between 0 and 2. Auffinger et al (2009) extended the results by Soshnikov (2004), to prove that for α A ð0; 4Þ, and for both Wigner and Wishart-type matrices, the point process of the largest eigenvalues (properly normalized) converges to an inhomogeneous Poisson point process whose intensity function is determined by the tail index of the (common) distribution of the entries of the matrix. A version of these results was also proved by Biroli et al (2007) …”
Section: Matrix Ensembles With Heavy-tailsmentioning
confidence: 76%
“…Some partial results relaxing the symmetry assumption can be found in [PeS07], [PeS08b], although at this time the universality at the edge of Wigner matrices with entries possessing non-symmetric distribution remains open. When the entries possess heavy tail, limit laws for the largest eigenvalue change, see [Sos04], [AuBP07]. Concerning the spacing in the bulk, universality was proved when the i.i.d.…”
Section: Bibliographical Notesmentioning
confidence: 99%
“…α , are asymptotically distributed as a Poisson process and their associated eigenvectors are essentially carried by two coordinates (this phenomenon has already been remarked for full matrices by Soshnikov in [29,30] when α < 2 and by Auffinger et al in [1] when α < 4). On the other hand, when α > 2(1 + µ −1 ), the largest eigenvalues have order N µ 2 and most eigenvectors of the matrix are delocalized, i.e.…”
Section: mentioning
confidence: 65%
“…On s'intéresse aux plus grandes valeurs propres et aux vecteurs propres associés et prouve la transition de phase suivante. D'une part, quand α < 2(1 + µ −1 ), les plus grandes valeurs propres ont pour ordre N 1+µ α , sont asymptotiquement distribuées selon un processus de Poisson et les vecteurs propres associés sont essentiellement portés par deux coordonnées (ce phénomène a déjàété remarqué pour des matrices pleines par Soshnikov dans [29,30] quand α < 2, et par Auffinger et al dans [1] quand α < 4). D'autre part, quand α > 2(1 + µ −1 ), les plus grandes valeurs propres ont pour ordre N…”
Section: unclassified
See 1 more Smart Citation