2023
DOI: 10.1007/s10701-023-00707-9
|View full text |Cite
|
Sign up to set email alerts
|

Pointers for Quantum Measurement Theory

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 15 publications
0
1
0
Order By: Relevance
“…We employ the well‐known Von‐Neumann measurement prescription by constructing the following Hamiltonian [27]: H=iA|1Pfalse⟨0false|iA|0Pfalse⟨1false|,$$\begin{eqnarray} H = i A \otimes \mathinner {|{1}\rangle }_P \mathinner {\langle {0}|} - i A^\dag \otimes \mathinner {|{0}\rangle }_P \mathinner {\langle {1}|}, \end{eqnarray}$$where $\otimes$ denote a tensor product, A$A^\dag$ is the adjoin of A$A$, and P$P$ is the qubit pointer [28, 29]. If we simulate the Hamiltonian H$H$ in (27) with the initial state |z|zfalse|0false⟩P$\mathinner {|{z}\rangle } \mathinner {|{z}\rangle } \mathinner {|{0}\rangle }_P$ in a quantum computer, the quantum system will evolve in accordance with H$H$ for a time step ε$\epsilon$ following (19) to reach the following steady‐state false|normalΨfalse⟩$\mathinner {|{\Psi }\rangle }$ [21] (see Appendix A.2): |Ψ=e...…”
Section: Quantum Computing Methods For Power System Dynamics' Daesmentioning
confidence: 99%
“…We employ the well‐known Von‐Neumann measurement prescription by constructing the following Hamiltonian [27]: H=iA|1Pfalse⟨0false|iA|0Pfalse⟨1false|,$$\begin{eqnarray} H = i A \otimes \mathinner {|{1}\rangle }_P \mathinner {\langle {0}|} - i A^\dag \otimes \mathinner {|{0}\rangle }_P \mathinner {\langle {1}|}, \end{eqnarray}$$where $\otimes$ denote a tensor product, A$A^\dag$ is the adjoin of A$A$, and P$P$ is the qubit pointer [28, 29]. If we simulate the Hamiltonian H$H$ in (27) with the initial state |z|zfalse|0false⟩P$\mathinner {|{z}\rangle } \mathinner {|{z}\rangle } \mathinner {|{0}\rangle }_P$ in a quantum computer, the quantum system will evolve in accordance with H$H$ for a time step ε$\epsilon$ following (19) to reach the following steady‐state false|normalΨfalse⟩$\mathinner {|{\Psi }\rangle }$ [21] (see Appendix A.2): |Ψ=e...…”
Section: Quantum Computing Methods For Power System Dynamics' Daesmentioning
confidence: 99%