2009 23rd IEEE/NPSS Symposium on Fusion Engineering 2009
DOI: 10.1109/fusion.2009.5226382
|View full text |Cite
|
Sign up to set email alerts
|

Plasma and current drive parameter options for a megawatt range fusion neutron source

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
2

Year Published

2009
2009
2012
2012

Publication Types

Select...
4

Relationship

2
2

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 13 publications
0
2
0
2
Order By: Relevance
“…The highest level of neutron production reached so far, a rate of ∼10 18 n s −1 , corresponds to only 3 MW of DT fusion power. This means that relatively small devices with MW range of fusion power may be considered as the first fusion application for neutron production [3] instead of GW range devices typically developed for energy production.…”
Section: Introductionmentioning
confidence: 99%
“…The highest level of neutron production reached so far, a rate of ∼10 18 n s −1 , corresponds to only 3 MW of DT fusion power. This means that relatively small devices with MW range of fusion power may be considered as the first fusion application for neutron production [3] instead of GW range devices typically developed for energy production.…”
Section: Introductionmentioning
confidence: 99%
“…Nevertheless, such reactors with power in the range 10-50 MW are considered adequate for testing fusion nuclear technology components or driving sub-critical blankets for breeding [34]. While this paper addresses only the physics aspects of a compact fusion plasma core, the possibility of attaining the neutron flux required for contemporary neutron research and technologies using a low-power tokamak is demonstrated in a recent study [35] and references therein.…”
Section: Discussionmentioning
confidence: 99%
“…При концептуальном анализе источников термоядерных нейтронов на основе компактных токама-ков с низким аспектным отношением необходимо определить параметры разряда, обеспечивающие ста-ционарный режим с неиндуктивной генерацией тока [1]. Оптимальная система дополнительного нагрева должна обеспечивать пробой, подъём тока и его стационарное поддержание, что требует применения различных неиндуктивных методов как для создания оптимальных профилей давления плазмы с целью создания максимальной величины бутстреп-тока, так и для непосредственной генерации токов увлече-ния.…”
Section: Introductionunclassified