2021
DOI: 10.1016/j.jhydrol.2021.127043
|View full text |Cite
|
Sign up to set email alerts
|

Physics-guided deep learning for rainfall-runoff modeling by considering extreme events and monotonic relationships

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
32
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
2
2

Relationship

2
7

Authors

Journals

citations
Cited by 87 publications
(56 citation statements)
references
References 49 publications
0
32
0
2
Order By: Relevance
“…Many studies in hydrology have attempted to improve predictions of extremes such as floods (Mosavi et al, 2018) using multiple techniques that include using different criteria for model selection (Coulibaly et al, 2001), conditional density estimation networks (Cannon, 2012), training exclusively on extreme events such as historical high‐flow data (Fleming et al, 2015), adjustment of ML prediction bias to improve performance on the tails of the distribution (Belitz & Stackelberg, 2021), and using KGML models, for example by training an ML model on simulation data containing extremes that might not exist in the observation data (Read et al, 2017; Xie et al, 2021). However, in some cases KGML models may perform worse than traditional DL models; for example, Frame et al (2021) found that an LSTM constrained to conserve mass was not able to predict peak flows as well as the base LSTM, although both models had lower errors than the process‐based model used for comparison.…”
Section: Opportunities For Advancement Of Water Quality MLmentioning
confidence: 99%
“…Many studies in hydrology have attempted to improve predictions of extremes such as floods (Mosavi et al, 2018) using multiple techniques that include using different criteria for model selection (Coulibaly et al, 2001), conditional density estimation networks (Cannon, 2012), training exclusively on extreme events such as historical high‐flow data (Fleming et al, 2015), adjustment of ML prediction bias to improve performance on the tails of the distribution (Belitz & Stackelberg, 2021), and using KGML models, for example by training an ML model on simulation data containing extremes that might not exist in the observation data (Read et al, 2017; Xie et al, 2021). However, in some cases KGML models may perform worse than traditional DL models; for example, Frame et al (2021) found that an LSTM constrained to conserve mass was not able to predict peak flows as well as the base LSTM, although both models had lower errors than the process‐based model used for comparison.…”
Section: Opportunities For Advancement Of Water Quality MLmentioning
confidence: 99%
“…Driven by the increasingly powerful performance of computers and big data, statistical and non-inferential deep learning methods enable machines to have the same ability to analyze and learn as human beings (Kadow et al, 2020;Karpatne et al, 2018;Sit et al, 2020). Recent case studies have revealed that deep learning networks have succeeded in geoscience fields (Karpatne et al, 2018;Xie et al, 2021). It has been widely used for spatial missing data (Kadow et al, 2020), spatial downscaling (Jiang et al, 2021;Nearing et al, 2021), rainfall simulation improvement (Liu et al, 2020), and spatial phenomena prediction (Pan et al, 2019).…”
Section: Deep Residual Networkmentioning
confidence: 99%
“…En la actualidad, existen varios modelos hidrológicos de lluvia-escorrentía que se diferencian por los detalles en los procesos, es decir, la conceptualización de los procesos, los datos requeridos de entrada y la resolución espacial-temporal (Nonki et al, 2021). Generalmente se debe elegir entre diversos modelos: continuos, agrupados, distribuidos, deterministas o estocásticos, dependiendo de los datos de entradas que requieren y se tengan para ejecutarlos Sin embargo, los modelos lluvia-escorrentía tienen un mayor uso, debido principalmente a los pocos datos de entrada que requieren, lo cual los hace útiles en zonas con escasez de información (Tegegne et al, 2017) Los modelos lluvia-escorrentía son un campo clave de las investigaciones hidrológicas, ya q que proporcionan información fundamental para la gestión del recurso hídrico (Tajiki et al, 2020;Xie et al, 2020;Xie, Liu, Zhang, Han, et al, 2021), principalmente en cuanto a desastres por sequías (Kang & Sridhar, 2017;Pan et al, 2020) e inundaciones (Gao et al, 2019;Hostache et al, 2018;X. Zhang et al, 2018).…”
Section: Los Modelos Hidrológicos Empleadosunclassified