1999
DOI: 10.1016/s0026-2714(99)00158-4
|View full text |Cite
|
Sign up to set email alerts
|

Physical limits and lifetime limitations of semiconductor devices at high temperatures

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
33
0
3

Year Published

2005
2005
2024
2024

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 66 publications
(36 citation statements)
references
References 5 publications
0
33
0
3
Order By: Relevance
“…The former processes the loading measurements by the diverter, and then transfers the measured signal to the metering chip. Due to the metallic material of the diverter, its resistance value is unstable when operating at high temperature, which in general results in decreased metering accuracy [28]. In addition, the stability of the reference value of the voltage of the metering chip is dependent on the proper operation of the power supplying module, whose components are not stable at a high temperature [29].…”
Section: B Physical Degradationmentioning
confidence: 99%
“…The former processes the loading measurements by the diverter, and then transfers the measured signal to the metering chip. Due to the metallic material of the diverter, its resistance value is unstable when operating at high temperature, which in general results in decreased metering accuracy [28]. In addition, the stability of the reference value of the voltage of the metering chip is dependent on the proper operation of the power supplying module, whose components are not stable at a high temperature [29].…”
Section: B Physical Degradationmentioning
confidence: 99%
“…New power electronic devices designed for operation at high temperatures would require extensive alterations, affecting their entire environment, such as the passivation, encapsulation, and substrates. [1][2][3] This therefore requires adaption of the technological choices to the critical environmental constraints, and particularly the temperature ones. This also implies modification of most of the converter components (active and passive) for an environment where the ambient temperature can easily exceed 200°C, as is usually studied.…”
Section: Introductionmentioning
confidence: 99%
“…C'est également la raison pour laquelle les composants à grand gap sont mieux adaptés pour des applications à température de fonctionnement élevée (Fig.4). Pour des dispositifs haute tension (1000V), la limite théorique du silicium est de 150°C alors quelle est de 900°C pour du 6H-SiC [1]. Pour des dispositifs 100V, celle-ci est de l'ordre de 250°C pour du Si (Fig.5).…”
Section: B) Courant De Fuite D'une Jonction Pnunclassified
“…Pour des dispositifs 100V, celle-ci est de l'ordre de 250°C pour du Si (Fig.5). La seconde conséquence de l'augmentation de n i concerne l'accroissement du courant de fuite en volume des jonctions PN qui est considéré comme une des principale limitation à l'augmentation de la température [1,2]. Ce courant de fuite a deux origines.…”
Section: B) Courant De Fuite D'une Jonction Pnunclassified
See 1 more Smart Citation