2018
DOI: 10.1021/acsmacrolett.8b00290
|View full text |Cite
|
Sign up to set email alerts
|

Photocontrolled Growth of Cross-Linked Nanonetworks

Abstract: We report the preparation of photoresponsive nanomaterials and the increase of their nanoscopic size through a “photogrowth” mechanism. The photogrowable nanonetworks (PGNNs) were synthesized by cross-linking two components, a thiolated acrylate copolymer and a symmetrical bismaleimide trithiocarbonate (TTC), utilizing thiol-maleimide click chemistry. With this strategy, nanonetwork growth was achieved through a photoinduced polymerization from the integrated trithiocarbonate by either direct photolysis or pho… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
34
0
2

Year Published

2019
2019
2022
2022

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 31 publications
(37 citation statements)
references
References 31 publications
(49 reference statements)
1
34
0
2
Order By: Relevance
“…[95] Iniferter-based CRP methods have undergone ar enaissance in recent years, particularly with the advent of photoredox catalysis; [107,108] these methods have proven useful for the synthesis of photoactive polymer networks with topologies and compositions that can be spatiotemporally modulated using various wavelengths of light. [39,41,[109][110][111] Though polymer networks can be synthesized using conventional free radical polymerization of vinyl monomers and divinyl crosslinkers,the low rate of initiation compared to propagation along with extensive radical termination inherent to this process lead to large network density fluctuations that negatively impact the mechanical properties of the resulting materials ( Figure 5B). In contrast, the high initiation relative to propagation rates of RDRP processes provide ar elatively homogeneous distribution of dormant branched polymers in the early stages of network formation (Figure 5B); these network fragments can diffuse before they are reactivated, preventing the formation of densely-crosslinked network clusters and producing am ore homogeneous network.…”
Section: Controlled Radical Polymerization In Polymer Network Synthesissupporting
confidence: 63%
See 1 more Smart Citation
“…[95] Iniferter-based CRP methods have undergone ar enaissance in recent years, particularly with the advent of photoredox catalysis; [107,108] these methods have proven useful for the synthesis of photoactive polymer networks with topologies and compositions that can be spatiotemporally modulated using various wavelengths of light. [39,41,[109][110][111] Though polymer networks can be synthesized using conventional free radical polymerization of vinyl monomers and divinyl crosslinkers,the low rate of initiation compared to propagation along with extensive radical termination inherent to this process lead to large network density fluctuations that negatively impact the mechanical properties of the resulting materials ( Figure 5B). In contrast, the high initiation relative to propagation rates of RDRP processes provide ar elatively homogeneous distribution of dormant branched polymers in the early stages of network formation (Figure 5B); these network fragments can diffuse before they are reactivated, preventing the formation of densely-crosslinked network clusters and producing am ore homogeneous network.…”
Section: Controlled Radical Polymerization In Polymer Network Synthesissupporting
confidence: 63%
“…Notably, RAFT was originally strictly defined as lacking reversible termination, thus distinguishing it from initiation, chain transfer, termination, i.e., “iniferter” processes (Figure A), that used similar CTAs . Iniferter‐based CRP methods have undergone a renaissance in recent years, particularly with the advent of photoredox catalysis; these methods have proven useful for the synthesis of photoactive polymer networks with topologies and compositions that can be spatiotemporally modulated using various wavelengths of light …”
Section: Polymer Network Structurementioning
confidence: 99%
“…Bemerkenswerterweise wurde RAFT ursprünglich streng definiert als Fehlen reversibler Abbruchprozesse, auf diese Weise erfolgte eine Abgrenzung von Prozessen mit Kettenstart, Kettenübertragung, Kettenabbruch, d. h. “Iniferter”‐Prozessen (Abbildung A), bei denen ähnliche CTAs genutzt wurden . Auf Inifertern basierende CRP‐Methoden haben in den letzten Jahren, insbesondere mit dem Aufkommen der Photoredoxkatalyse, eine Renaissance erlebt; diese Methoden erwiesen sich als nützlich für die Synthese von photoaktiven Polymernetzwerken mit Topologien und Zusammensetzungen, die mit unterschiedlichen Wellenlängen des Lichts räumlich und zeitlich moduliert werden können …”
Section: Struktur Von Polymernetzwerkenunclassified
“…[95] AufI nifertern basierende CRP-Methoden haben in den letzten Jahren, insbesondere mit dem Aufkommen der Photoredoxkatalyse,e ine Renaissance erlebt; [107,108] diese Methoden erwiesen sich als nützlich fürd ie Synthese von photoaktiven Polymernetzwerken mit Topologien und Zusammensetzungen, die mit unterschiedlichen Wellenlängen des Lichts räumlich und zeitlich moduliert werden kçnnen. [39,41,[109][110][111] Obwohl Außerdem wurden auch ATRP [113][114][115] und RAFT-Polymerisation [116] Wenn in Polymernetzwerke Initiatorzentren eingebaut werden, kçnnen RDRP-Methoden eine einfache Modifizierung nach der Synthese ermçglichen, um die Eigenschaften der Polymernetzwerke deutlich zu verändern. Außerdem ermçglichen neuere Entwicklungen von lichtgesteuerten lebenden radikalischen Polymerisationen (Photo-CRP) [108] eine räumliche und zeitliche Kontrolle dieser Netzwerkumwandlungen nach der Synthese.2 013 demonstrierten Johnson und Mitarbeiter,dass Tr ithiocarbonate enthaltende Stränge eines Polymernetzwerks in Gegenwart von Monomeren bei Bestrahlung mit langwelligem UV-Licht (ca.…”
Section: Steuerung Von Loops Unterschiedlicher Ordnung In Polymernetzunclassified
“…One promising approach to enable monomer insertion into an initially fabricated polymer networks [28][29][30][31] or to fabricate dynamic polymer networks 29,[32][33][34][35][36][37][38] , is by introduction of living functional groups such as trithiocarbonate (TTCs) iniferters-also known as reversible addition fragmentation chain transfer (RAFT) agents [39][40][41][42][43][44][45] into the strands of cross-linked networks. For instance, Johnson's group synthesized a gel network containing TTCs and demonstrated post-synthesis monomer insertion into these networks upon reactivation of TTC groups (under UV light).…”
Section: Introductionmentioning
confidence: 99%