2013
DOI: 10.1038/nchem.1727
|View full text |Cite
|
Sign up to set email alerts
|

Photochemical activity of a key donor–acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes

Abstract: Asymmetric catalytic variants of sunlight-driven photochemical processes hold extraordinary potential for the sustainable preparation of chiral molecules. However, the involvement of short-lived electronically excited states inherent to any photochemical reaction makes it challenging for a chiral catalyst to dictate the stereochemistry of the products. Here, we report that readily available chiral organic catalysts, with well-known utility in thermal asymmetric processes, can also confer a high level of stereo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

7
260
0
8

Year Published

2013
2013
2024
2024

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 574 publications
(283 citation statements)
references
References 34 publications
7
260
0
8
Order By: Relevance
“…1 In this regard, our group developed a new protocol based on the formation of a chiral charge-transfer complex, formed between a catalytic generated enamine and an alkylating agent. 2 An electron transfer occurs between the two partners promoted by the visible light irradiation, followed by the fragmentation of the leaving group, thus originating a di-radical pair that combines in the solvent cage to afford the alkylated substrate (Scheme1). To the best of our knowledge, this activation mode has never been used before in asymmetric aminocatalysis.…”
Section: Resultsmentioning
confidence: 99%
“…1 In this regard, our group developed a new protocol based on the formation of a chiral charge-transfer complex, formed between a catalytic generated enamine and an alkylating agent. 2 An electron transfer occurs between the two partners promoted by the visible light irradiation, followed by the fragmentation of the leaving group, thus originating a di-radical pair that combines in the solvent cage to afford the alkylated substrate (Scheme1). To the best of our knowledge, this activation mode has never been used before in asymmetric aminocatalysis.…”
Section: Resultsmentioning
confidence: 99%
“…[74] As illustrated in Scheme 15, aldehyde 61 first reacts with chiral amine 64 or 65 added as a catalyst (0.2 equivalent) to give the corresponding enamine, which forms a donor-acceptor complex with electron-deficient benzyl bromide 62 in the ground state. Selective photoexcitation of the charge-transfer band of the complex in the visible region induces electron transfer to give radical cationic enamine and 62 radical anion, the latter of which spontaneously decomposes to give a benzyl radical.…”
Section: Catalytic Supramolecular Photochirogenesis With Miscellaneoumentioning
confidence: 99%
“…Dabei trifft man auf viele bekannte Gerüste, die sich bereits in nicht-photochemischen Arbeiten als privilegierte Strukturen herausgestellt haben, etwa die Pyrrolidine 61, [75] 64, [76] und 65, [77] die Imidazolidinone 62 [78] und 63, [79] sowie auf Chinin-Derivate wie 66 [80] (Abbildung 11). [82] Die intermediär erhaltenen a-Hydroperoxyaldehyde wurden sofort reduziert, und die entsprechenden Diole 67 wurden mit guter Enantioselektivität erhalten, wobei in der erwähnten Studie a-Methylprolin (61) als Katalysator verwendet wurde.…”
Section: Amineunclassified
“…[89] Mechanistisch (68) in enantioselektiven a-Alkylierungen über-nehmen kçnnen. [92] In neueren Arbeiten haben Melchiorre und Mitarbeiter gezeigt, dass in vielen Fällen für die a-Alkylierung von Aldehyden [77] und Ketonen [93] kein zweiter Katalysator bençtigt wird. Vielmehr genügt eine direkte Anregung mit sichtbarem Licht, um derartige Alkylierungen durchzuführen.…”
Section: Amineunclassified