2022
DOI: 10.1039/d2cc05196f
|View full text |Cite
|
Sign up to set email alerts
|

Photocatalytic deracemisation of cobalt(iii) complexes with fourfold stereogenicity

Abstract: The deracemisation of fourfold stereogenic cobalt(III) diketonates with a chiral photocatalyst is described. With only 0.5 mol% menthyl Ru(bpy)32+ photocatalyst, an enantiomeric enrichment of up to 88:12 e.r. was obtained...

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
7
0
3

Year Published

2022
2022
2023
2023

Publication Types

Select...
5
1

Relationship

2
4

Authors

Journals

citations
Cited by 9 publications
(10 citation statements)
references
References 48 publications
0
7
0
3
Order By: Relevance
“…While all these atropisomeric systems obey the classical Le Bel–van ’t Hoff rule, [4] higher‐order stereogenicity arises when more than two isomers emerge from an irreducible stereogenic unit for which an extended rule predicts the overall number of possible stereoisomers [5] . Extrapolating twofold to higher‐order stereogenic systems, for instance with high‐valent stereocenters, [6] Ōki atropisomers [7] or overcrowded alkenes, [8] therefore significantly expands stereochemical space and demands for selective methods to catalytically control stereogenic units with more than two isomeric states (Figure 1A). For sixfold stereogenicity, a configurationally stable C(sp 2 )−C(sp 3 ) axis was recently selectively addressed by a rhodium catalyzed arene‐forming [2+2+2] cyclotrimerization, [7] while catalyst control over threefold stereogenicity remained elusive despite the simplicity of this stereoisomerism conveyed by the conformational analysis of n ‐butane (Figure 1B, top).…”
Section: Figurementioning
confidence: 99%
See 1 more Smart Citation
“…While all these atropisomeric systems obey the classical Le Bel–van ’t Hoff rule, [4] higher‐order stereogenicity arises when more than two isomers emerge from an irreducible stereogenic unit for which an extended rule predicts the overall number of possible stereoisomers [5] . Extrapolating twofold to higher‐order stereogenic systems, for instance with high‐valent stereocenters, [6] Ōki atropisomers [7] or overcrowded alkenes, [8] therefore significantly expands stereochemical space and demands for selective methods to catalytically control stereogenic units with more than two isomeric states (Figure 1A). For sixfold stereogenicity, a configurationally stable C(sp 2 )−C(sp 3 ) axis was recently selectively addressed by a rhodium catalyzed arene‐forming [2+2+2] cyclotrimerization, [7] while catalyst control over threefold stereogenicity remained elusive despite the simplicity of this stereoisomerism conveyed by the conformational analysis of n ‐butane (Figure 1B, top).…”
Section: Figurementioning
confidence: 99%
“…[14] In the case of diaryl sulfone CÀ S atropisomers with two isomeric states, the Clayden group developed an elegant chiral reagent and auxiliary based approach towards enantioenriched atropisomers, [15] representing a basis to achieve catalyst control for CÀ S atropisomerism. With our aim to catalytically address higher-order stereogenicity, [6][7][8]16] we were thus captivated by the possibility of catalytically controlling the configuration of CÀ S atropisomeric sulfones with three isomeric states resulting from a single stereogenic element. To the best of our knowledge, catalyst control over CÀ S atropisomerism is without precedent, [2b] further motivating us to develop an enantio-and diastereoselective approach by combining two catalytic sulfur oxidations (Figure 1C).…”
mentioning
confidence: 99%
“…Während all diese atropisomeren Systeme der klassischen Le Bel–van ’t Hoff‐Regel folgen, [4] ergibt sich Stereogenität höherer Ordnung, wenn mehr als zwei Isomere aus einer irreduziblen stereogenen Einheit hervorgehen, wobei die Anzahl möglicher Stereoisomere durch eine erweiterte Le Bel‐van ’t Hoff‐Regel vorhergesagt wird [5] . Extrapolation der zweifachen Stereogenität auf Systeme höherer Ordnung wie hochvalente Stereozentren, [6] Ōki‐Atropisomere [7] oder sterisch überfrachtete Alkene [8] vergrößert daher den stereochemischen Raum erheblich, was gleichzeitig selektive Methoden zur katalytischen Kontrolle stereogener Einheiten mit mehr als zwei isomeren Zuständen erfordert (Abbildung 1A). Für die sechsfache Stereogenität wurde kürzlich eine konfigurationsstabile C(sp 2 )−C(sp 3 )‐Achse selektiv durch eine Aren‐bildende Rhodium‐katalysierte [2+2+2]‐Cyclotrimerisierung aufgebaut [7] .…”
Section: Figureunclassified
“…[14] Für Diarylsulfon-Atropisomere mit zwei isomeren Zuständen entwickelte die Clayden-Gruppe einen eleganten Ansatz auf der Basis chiraler Reagenzien und Auxiliare, der zu enantiomerenangereicherten CÀ S-Atropisomeren führte [15] und eine Grundlage für die katalytische Kontrolle über CÀ S-Atropisomere darstellt. Mit unserem Ziel, Katalysatorkontrolle über Systeme mit Stereogenität höherer Ordnung zu erlangen, [6][7][8]16] waren wir von der Möglichkeit fasziniert, die Konfiguration von CÀ S-atropisomeren Sulfonen mit drei isomeren Zuständen, welche aus einem einzigen stereogenen Element resultieren, katalytisch anzusteuern. Nach unserem besten Wissen ist die katalytische Kontrolle über CÀ S-Atropisomerie bisher ohne Präzedenz, [2b] was uns zusätzlich motivierte, einen enantio-und diastereoselektiven Ansatz durch die Kombination zweier katalytischer Sulfoxidationen zu entwickeln (Abbildung 1C).…”
unclassified
“…37,38 The transformation would contribute to the growing interest in light-enabled deracemization of small molecules using low molecular weight photocatalysts. [39][40][41][42][43][44][45][46][47][48][49] To this growing repertoire, it was envisaged that chiral aluminum salen complexes could be effectively utilized in the deracemization of cyclopropyl ketones through electron-transfer to the carbonyl group: this would be achieved through substrate coordination and subsequent excitation of the ligand chromophore, followed by electron-transfer in a chiral environment (Fig. 1D).…”
mentioning
confidence: 99%