Various polyethylene terephthalate (PET)/clay nanocomposites containing a commercial organoclay (organophilic montmorillonite nanoclay [OMMT]) and a monomer-activated OMMT (remodified OMMT) were prepared via in situ interlayer polycondensation of dimethyl terephthalate and ethylene glycol. In order to remodify the commercial OMMT nanoparticles, a diacid chloride monomer was applied. The prepared nanocomposites were characterized by diverse methods, including X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and intrinsic viscosity measurements. The results of the study revealed that the PET/(remodified OMMT) nanocomposites possess a better state of clay dispersion as well as significantly better thermal properties as compared with the PET/OMMT nanocomposites. Moreover, the PET/(remodified OMMT) nanocomposites showed higher crystallization temperature, degree of crystallinity, maximum degradation temperature, and lower halftime of crystallization than that of the PET/OMMT nanocomposites. It was found that the remodification process for OMMT led to less of a foaming problem during in situ polymerization. J. VINYL ADDIT. TECHNOL., 21:70-78, 2015.