2010
DOI: 10.1007/s10532-010-9420-6
|View full text |Cite
|
Sign up to set email alerts
|

Phenol biodegradation by the thermoacidophilic archaeon Sulfolobus solfataricus 98/2 in a fed-batch bioreactor

Abstract: Toxic at low concentrations, phenol is one of the most common organic pollutants in air and water. In this work, phenol biodegradation was studied in extreme conditions (80°C, pH = 3.2) in a 2.7 l bioreactor with the thermoacidophilic archaeon Sulfolobus solfataricus 98/2. The strain was first acclimatized to phenol on a mixture of glucose (2000 mg l(-1)) and phenol (94 mg l(-1)) at a constant dissolved oxygen concentration of 1.5 mg l(-1). After a short lag-phase, only glucose was consumed. Phenol degradation… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
21
0
2

Year Published

2012
2012
2023
2023

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 20 publications
(24 citation statements)
references
References 34 publications
1
21
0
2
Order By: Relevance
“…Other possible explanations for the low biomass yield in comparison to E. coli could be the inefficiency of metabolism at high temperatures due to the instability of metabolites [36] and the possibility that S. solfataricus does not use all of the imported glucose for biomass formation and respiration. Recent literature studies described a carbon recovery between 72% and 83% [37], [38], where only 25% of the imported carbon atoms are used for biomass formation. One possible explanation for this discrepancy is that S. solfataricus is known to produce exopolysaccharides (EPS) [39], [40].…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…Other possible explanations for the low biomass yield in comparison to E. coli could be the inefficiency of metabolism at high temperatures due to the instability of metabolites [36] and the possibility that S. solfataricus does not use all of the imported glucose for biomass formation and respiration. Recent literature studies described a carbon recovery between 72% and 83% [37], [38], where only 25% of the imported carbon atoms are used for biomass formation. One possible explanation for this discrepancy is that S. solfataricus is known to produce exopolysaccharides (EPS) [39], [40].…”
Section: Resultsmentioning
confidence: 99%
“…S. solfataricus is known to grow on phenol as sole carbon source [16], [37]. To make phenol bioavailable (in S. solfataricus ), phenol is converted to catechol by phenol 2-monooxygenase (Figure 6: (49)).…”
Section: Resultsmentioning
confidence: 99%
“…For example, the degradation of toxic pollutants has been demonstrated; S. solfataricus 98/2 could utilize phenol for growth in a fed-batch bioreactor [83]. The recovery of base, precious and strategic metals through whole cell bio-oxidation processes has been a long-term goal for extreme thermoacidophiles and recent efforts have focused on identifying process bottlenecks and improved processing strategies.…”
Section: Biocatalysis At Elevated Temperaturesmentioning
confidence: 99%
“…Muchos de los modelos que describen este efecto se basan en expresiones obtenidas originalmente para la cinética de inhibición de enzimas. Un modelo muy utilizado para representar la inhibición de µ con s es el denominado modelo de Haldane 12) donde k i se denomina constante de inhibición y µ o…”
Section: Cinética Del Crecimiento Microbianounclassified
“…Algunos metabolitos como los carotenoides, las lipasas y la biomasa de microalgas tienen una gran variedad de aplicaciones industriales [8,9,10]. También se los considera para el tratamiento de desechos orgánicos, la biodegradación de sustancias peligrosas [11,12] y la producción de combustibles alternativos (hidrógeno, metano, butano, entre otros) [13,14]. Existe a su vez una variedad de microorganismos capaces de generar biopolímeros los cuales, además de ser biodegradables, exhiben interesantes propiedades físicas [15].…”
Section: Introductionunclassified