Apelin, a recently isolated neuropeptide that is expressed in the supraoptic and the paraventricular nuclei, acts on specific receptors located on vasopressinergic neurons. The increased phasic pattern of these neurons facilitates sustained antidiuresis during dehydration or lactation. Here, we investigated whether apelin interacts with arginine vasopressin (AVP) to maintain body fluid homeostasis. We first characterized the predominant molecular forms of endogenous hypothalamic and plasma apelin as corresponding to apelin 13 and, to a lesser extent, to apelin 17. We then demonstrated that, in lactating rats, apelin was colocalized with AVP in supraoptic nucleus magnocellular neurons and given intracerebroventricularly inhibited the phasic electrical activity of AVP neurons. In lactating mice, intracerebroventricular administration of apelin 17 reduced plasma AVP levels and increased diuresis. Moreover, water deprivation, which increases systemic AVP release and causes depletion of hypothalamic AVP stores, decreased plasma apelin concentrations and induced hypothalamic accumulation of the peptide, indicating that AVP and apelin are conversely regulated to facilitate systemic AVP release and suppress diuresis. Opposite effects of AVP and apelin are likely to occur at the hypothalamic level through autocrine modulation of the phasic electrical activity of AVP neurons. Altogether, these data demonstrate that apelin acts as a potent diuretic neuropeptide counteracting AVP actions through inhibition of AVP neuron activity and AVP release. The coexistence of apelin and AVP in magnocellular neurons, their opposite biological effects, and regulation are likely to play a key role for maintaining body fluid homeostasis.A pelin is a bioactive peptide recently isolated from bovine stomach extracts (1). It was identified as the endogenous ligand of the human orphan G protein-coupled receptor APJ (1, 2), reported to act as a coreceptor of CD4 for human and simian immunodeficiency viruses (3, 4). Apelin is a 36-aa peptide derived from a 77-aa precursor, preproapelin, for which cDNAs have been cloned from humans, cattle, rats, and mice (1, 5, 6). The apelin precursor has a fully conserved C-terminal sequence between Trp-55 to Phe-77, including the C-terminal 17 (Lys-Phe-Arg-ArgGln-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe; K17F) and 13 (Gln-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe; Q13F) amino acid sequences. These molecular species, and the pyroglutamyl form of Q13F (pE13F), exhibit the highest activities on extracellular acidification rate (1) and strongly inhibit forskolinstimulated cAMP production in Chinese hamster ovary (CHO) cells expressing the human (5,7,8) or the rat (9) apelin receptor. These peptides also are highly potent inducers of rat apelin receptor internalization (10,11).In situ hybridization and RT-PCR studies have shown that the apelin precursor and apelin receptor mRNAs are expressed in various rat brain structures (6,8,9,12,13). Apelin-immunoreactive (IR) neurons are particularly abundant in ...