2008
DOI: 10.1103/physrevlett.100.095004
|View full text |Cite
|
Sign up to set email alerts
|

Phase Properties of Laser High-Order Harmonics Generated on Plasma Mirrors

Abstract: As a high-intensity laser-pulse reflects on a plasma mirror, high-order harmonics of the incident frequency can be generated in the reflected beam. We present a numerical study of the phase properties of these individual harmonics, and demonstrate experimentally that they can be coherently controlled through the phase of the driving laser field. The harmonic intrinsic phase, resulting from the generation process, is directly related to the coherent sub-laser-cycle dynamics of plasma electrons, and thus constit… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

3
53
0
2

Year Published

2008
2008
2013
2013

Publication Types

Select...
4
4
1

Relationship

1
8

Authors

Journals

citations
Cited by 73 publications
(58 citation statements)
references
References 22 publications
3
53
0
2
Order By: Relevance
“…Dense, femtosecond-laser-produced plasmas hold promise of converting laser light into coherent harmonics with much higher efficiency and of exploiting much higher laser intensities, because the plasma medium-in contrast to the atomic emitters-imposes no restriction on the strength of the laser field driving the harmonics [6][7][8][9][10][11][12][13] . Recent experimental studies of harmonics produced from overdense plasmas impressively corroborate several theoretical predictions: the high conversion efficiency 19 , the favourable scalability of the generation technique towards high photon energies 14,16,19 and excellent divergence due to the spatial coherence of the generated harmonics 19,22 . Whether the high-order harmonics that are produced in overdense plasmas • gold-coated off-axis parabolic mirror with the same focal length as the laser focusing parabola.…”
supporting
confidence: 50%
“…Dense, femtosecond-laser-produced plasmas hold promise of converting laser light into coherent harmonics with much higher efficiency and of exploiting much higher laser intensities, because the plasma medium-in contrast to the atomic emitters-imposes no restriction on the strength of the laser field driving the harmonics [6][7][8][9][10][11][12][13] . Recent experimental studies of harmonics produced from overdense plasmas impressively corroborate several theoretical predictions: the high conversion efficiency 19 , the favourable scalability of the generation technique towards high photon energies 14,16,19 and excellent divergence due to the spatial coherence of the generated harmonics 19,22 . Whether the high-order harmonics that are produced in overdense plasmas • gold-coated off-axis parabolic mirror with the same focal length as the laser focusing parabola.…”
supporting
confidence: 50%
“…First, due to the global temporal drift of the APT it induces, a change in the CE phase changes the intensities at which each individual attosecond XUV burst in the APT is generated. Second, a change in intensity modifies the subcycle 5 emission time of each XUV burst because it changes the time it takes for the returning Brunel electrons to reach the dense part of the plasma where they cross and trigger CWE [27,28]. For a few-cycle pulse envelope, the combination of these two effects leads to a dependence of the APT time structure on the CE phase of the pulse.…”
Section: Moiré Patternsmentioning
confidence: 99%
“…Une variation de ce temps, durant la durée de l'impulsion laser, entraîne une perte de périodicité qui se traduit dans le domaine spectral par une phase harmonique non-linéaire [8]. Nous montrerons dans la section 4 que cette phase peut se mesurer par une méthode interférométrique, donnant ainsi accès à la variation du temps de retour dans le plasma des électrons de Brunel.…”
Section: éMission Cohérente De Sillageunclassified
“…Ainsi, les oscillations plasmas sont excitées plus tard, et par suite les impulsions attosecondes émises plus tard lorsque l'éclairement laser diminue. D'après les simulations, ce phénomène est la principale conséquence d'une variation de l'éclairement laser, sur le train d'impulsions attosecondes [8]. Ceci est en accord avec les résultats expérimentaux précédents qui montrent que seul le temps d'émission des impulsions attosecondes varie avec l'éclairement.…”
Section: Dynamique éLectronique Du Plasmaunclassified