1 Pahmitaldehyde, olealdehyde and linolealdehyde acetal phosphatidic acids induced rapid shape change and dose-dependent biphasic aggregation of human platelets in platelet-rich plasma; aggregation was reversible at low doses and irreversible at high doses of the acetal phosphatidic acids. The palmitaldehyde congener elicited monophasic dose-dependent aggregation of sheep platelets in platelet-rich plasma. 4 The adenosine diphosphate (ADP) antagonist, 2-methylthio-AMP, and the cyclo-oxygenase inhibitor, aspirin, abolished PGAP-induced second phase aggregation and release in human platelets but did not affect the first, reversible, phase of aggregation. Both the first and second phases of PGAP-induced aggregation were abolished by chlorpromazine, by the phospholipase A2 inhibitor, mepacrine, and by nmolar concentrations of prostaglandin E1 (PGEI); these agents abolished the second, but not the first phase of ADP-induced aggregation.5 The related phospholipids, lecithin, lysolecithin and phosphatidic acid, at < 100 tM, neither induced aggregation of human platelets in platelet-rich plasma, nor modified PGAP-induced aggregation; 1-palmityl lysophosphatidic acid elicited aggregation of human platelets at a threshold concentration of 100 jIM. 6 It is concluded that the acetal phosphatidic acids induce platelet aggregation per se by direct action at the platelet membrane, and that the acetal function is of primary importance in their potent platelet-stimulating activity. Moreover, as the acetal phosphatidic acids are the major components of the smooth muscle-contracting acidic phospholipid tissue extract 'Darmstoff' (Vogt, 1949), their potent platelet-aggregating properties may be of physiological or pathological significance.