1973
DOI: 10.1063/1.1666193
|View full text |Cite
|
Sign up to set email alerts
|

Perturbation method for a nonlinear wave modulation. III

Abstract: The perturbation method for the nonlinear, slow modulation of a rapidly oscillatory plane wave, which was given in the first paper of this series for a class of systems of nonlinear partial differential equations, is now established for a general system of nonlinear integro-partial differential equations. It is shown that the system can be reduced to simpler nonlinear equations which in certain cases become the nonlinear Schrödinger equation. The reduction proceeds as in the first paper, and the result is then… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
39
0
11

Year Published

1992
1992
2018
2018

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 81 publications
(50 citation statements)
references
References 9 publications
0
39
0
11
Order By: Relevance
“…Для дальнейшего преобразования уравнения (5) при условии ≪ 1 можно воспользоваться пертурбативным методом редукции [22], согласно которому функция…”
Section: основные уравненияunclassified
“…Для дальнейшего преобразования уравнения (5) при условии ≪ 1 можно воспользоваться пертурбативным методом редукции [22], согласно которому функция…”
Section: основные уравненияunclassified
“…Для анализа этих уравнений воспользуемся пертурбативным мето-дом редукции [4,11], согласно которому функцию…”
Section: гт адамашвили мд пейкришвили рр коплатадзеunclassified
“…Next, to investigate modulation of the linear solution FðÈ; Þ (2.16) due to the nonlinearities of the capacitance, we apply reductive perturbation analysis [32][33][34] to eq. (2.10) for R ¼ 0.…”
Section: Reductive Perturbation Analysismentioning
confidence: 99%
“…(2.10) for voltage, we obtain the linear solution (2.16) with (2.17), (2.23), and (2.24). Then, to examine the nonlinear modulation of the linear solution (2.16), we apply reductive perturbation analysis [32][33][34] to eq. (2.10).…”
Section: Summary and Concluding Remarksmentioning
confidence: 99%
See 1 more Smart Citation