IMPORTANCE Wide-field optical coherence tomographic angiography (OCTA) may provide insights to peripheral capillary dropout in eyes with diabetic retinopathy (DR).OBJECTIVE To describe the diagnostic performance of wide-field OCTA with and without large vessel removal for assessment of DR in persons with diabetes.
DESIGN, SETTING, AND PARTICIPANTSThis case-control study was performed from April 26, 2018, to April 8, 2019, at a single tertiary eye center in Singapore. Case patients were those with type 2 diabetes for more than 5 years and bilateral DR diagnosed by fundus imaging; control participants included those with no self-reported history of diabetes, a fasting glucose level within the normal range in the past year, and no ocular pathologic findings. A wide-field (12 × 12-mm 2 ) fovea-centered scan was performed using a prototype swept source OCTA system. Retinal microvasculature was examined by separating the angiograms into large vessels, capillaries, and capillary dropout regions.
MAIN OUTCOMES AND MEASURES Area under the receiver operating characteristic curve (AUC)for DR severity discrimination using wide-field vascular metrics. Retinal perfusion density (RPD), capillary perfusion density (CPD), large vessel density (LVD), and capillary dropout density (CDD) were calculated. Low-contrast regions were excluded from the calculation.
RESULTSA total of 49 eyes in 27 control participants (17 male [63.0%]; mean [SD] age, 59.96 [7.63] years; age range, 44-79 years) and 76 eyes in 47 patients with diabetes (29 male [61.7%]; mean [SD] age, 64.36 [8.08] years; range, 41-79 years) were included. Among eyes in patients with diabetes, 23 were in those with diabetes but no DR, 25 in those with mild nonproliferative DR, and 28 in those with moderate to severe nonproliferative DR. There was no difference in RPD, CPD, LVD, and CDD between the control group and the group with diabetes and no DR. There was a stepwise decrease in RPD, CPD, and CDD in the diabetes with no DR, mild nonproliferative DR, and moderate to severe nonproliferative DR groups, whereas LVD was not associated with DR staging. The nonproliferative DR group had decreased RPD, CPD, and CDD compared with the control group. The CPD had higher AUCs than RPD for discriminating diabetes with nonproliferative DR (combined mild and moderate to severe nonproliferative DR) vs no DM (AUC, 0.92 [95% CI, 0.87-0.98] vs 0.89 [95% CI, 0.83-0.95], P = .01), diabetes with no DR vs mild nonproliferative DR (AUC, 0.81 [95% CI, 0.68-0.94] vs 0.77 [95% CI, 0.64-0.91], P = .18), and mild nonproliferative DR vs moderate to severe nonproliferative DR (AUC, 0.82 [95% CI, 0.71-0.94] vs 0.78 [95% CI, 0.65-0.91], P = .01) but similar AUCs for no DM vs diabetes with no DR. The total perfusion density and CPD in wide-field OCTA had better discriminative power than the central 6 × 6-mm 2 field (CPD, 0.89 [95% CI, 0.83-0.95] vs 0.84 [95% CI, 0.77-0.92], P = .06; total perfusion density, 0.93 [95% CI, 0.87-0.98] vs 0.90 [95% CI, 0.83-0.96], P = .06).(continued) Key Points Question Wha...