2021
DOI: 10.3390/electronics10111255
|View full text |Cite
|
Sign up to set email alerts
|

Performance Analysis of Multihop Underground Magnetic Induction Communication

Abstract: Magnetic induction (MI) is a promising solution for realizing wireless underground sensor networks (WUSNs) for many applications such as smart agriculture, surveillance, and environmental monitoring. In this study, a practical deployment model for a multihop MI-WUSN was developed, and its end-to-end performance was evaluated in terms of the signal-to-noise ratio, channel capacity, and bit error rate. We considered a multihop MI-WUSN and evaluated its end-to-end statistical performance for two scenarios pertain… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 38 publications
0
4
0
Order By: Relevance
“…[36] -Present a system based on acoustic waves [39] -Develop and evaluate a path loss model [37] -Study the propagation characteristic of EM waves Routing [43] -Propose a routing protocol for WUSN [46] -Optimize the power of the relay node on WUSN [44] -Use cluster-based cooperative models [45] -Deploy relay nodes to prolong network lifetime [40] -Description of a single-hop approach in WUSN [41] -Study the optimal placement of the relay nodes Energy [49] -Analyze the energy consumption of different networks [50] -Study the wake-up of buried sensor nodes [48] -Propose multi-hoped communications guarantying energy efficiency [47] -Present energy harvesting approaches for WUSN Antenna [53] -Study the impacts of moisture on antenna return loss and bandwidth [54] -Model the antenna return loss face to moisture variations [51] -Present a design of phased array antennas [52] -Study the impact of soil on UWB antenna MI [55] -Analyze the multi-hop underground communications based on MI [56] -Investigate MI communications based on relay circuits [57] -Propose a routing protocol for WUSN based on MI [58] -Compare the communications based on MI and EM waves [59] -Present the challenges of MI communications in WUSN [60] -Compare the communications based on MI and EM waves…”
Section: Ref Methodologymentioning
confidence: 99%
See 1 more Smart Citation
“…[36] -Present a system based on acoustic waves [39] -Develop and evaluate a path loss model [37] -Study the propagation characteristic of EM waves Routing [43] -Propose a routing protocol for WUSN [46] -Optimize the power of the relay node on WUSN [44] -Use cluster-based cooperative models [45] -Deploy relay nodes to prolong network lifetime [40] -Description of a single-hop approach in WUSN [41] -Study the optimal placement of the relay nodes Energy [49] -Analyze the energy consumption of different networks [50] -Study the wake-up of buried sensor nodes [48] -Propose multi-hoped communications guarantying energy efficiency [47] -Present energy harvesting approaches for WUSN Antenna [53] -Study the impacts of moisture on antenna return loss and bandwidth [54] -Model the antenna return loss face to moisture variations [51] -Present a design of phased array antennas [52] -Study the impact of soil on UWB antenna MI [55] -Analyze the multi-hop underground communications based on MI [56] -Investigate MI communications based on relay circuits [57] -Propose a routing protocol for WUSN based on MI [58] -Compare the communications based on MI and EM waves [59] -Present the challenges of MI communications in WUSN [60] -Compare the communications based on MI and EM waves…”
Section: Ref Methodologymentioning
confidence: 99%
“…The acoustic waves can reach distances of a few tens of meters underground [36], but the very low data rate, high noise levels and delays limit their uses in WUSNs [30,75]. The technologies based on magnetic induction (MI) are limited in terms of communication distance of about a few meters [55][56][57][58][59]. Ref.…”
Section: Improvement Of the Communication Rangesmentioning
confidence: 99%
“…A multi-hop magnetic induction (MI) based system was investigated due to its robust nature [21]. However, the challenge of improving transmission range persisted due to the high attenuation of magnetic field over distance.…”
Section: Modern Wusn Technologies and Advancement Of Acousticsmentioning
confidence: 99%
“…It is noted that some relay technologies have been proposed to extend the communication range based on transmission between traditional loop coils [10][11][12]. Alternatively, another way to address the range limitation problem is to employ more sensitive magnetic field sensors as MI receivers in place of the traditional coil.…”
Section: Introductionmentioning
confidence: 99%