Diabetes is a complex metabolic disorder triggered by the deficient secretion of insulin by the pancreatic β-cell or the resistance of peripheral tissues to the action of the hormone. Chronic hyperglycemia is the major consequence of this failure, and also the main cause of diabetic problems. Indeed, several clinical trials have agreed in that tight glycemic control is the best way to stop progression of the disease. Many anti-diabetic drugs for treatment of type 2 diabetes are commercially available, but no ideal normoglycemic agent has been developed yet. Moreover, weight gain is the most common side effect of many oral anti-diabetic agents and insulin, and increased weight has been shown to worsen glycemic control and increase the risk of diabetes progression. In this sense, the inorganic salt sodium tungstate (NaW) has been studied in different animal models of metabolic syndrome and diabetes, proving to have a potent effect on normalizing blood glucose levels and reducing body weight, without any hypoglycemic action. Although the liver has been studied as the main site of NaW action, positive effects have been also addressed in muscle, pancreas, brain, adipose tissue and intestine, explaining the effective anti-diabetic action of this salt. Here, we review NaW research to date in these different target organs. We believe that NaW deserves more attention, since all available anti-diabetic treatments remain suboptimal and new therapeutics are urgently needed.